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Saliency methods, which produce heat maps that highlight the areas of

the medical image that influence model prediction, are often presented
toclinicians as an aid in diagnostic decision-making. However, rigorous
investigation of the accuracy and reliability of these strategies is necessary
before they are integrated into the clinical setting. In this work, we
quantitatively evaluate seven saliency methods, including Grad-CAM,
across multiple neural network architectures using two evaluation metrics.
We establish the first human benchmark for chest X-ray segmentation
inamultilabel classification set-up, and examine under what clinical
conditions saliency maps might be more prone to failure inlocalizing
important pathologies compared with ahuman expert benchmark. We
find that (1) while Grad-CAM generally localized pathologies better than
the other evaluated saliency methods, all seven performed significantly
worse compared with the human benchmark, (2) the gap in localization
performance between Grad-CAM and the human benchmark was largest
for pathologies that were smaller in size and had shapes that were more
complex, and (3) model confidence was positively correlated with Grad-CAM
localization performance. Our work demonstrates that several important
limitations of saliency methods must be addressed before we canrely on
them for deep learning explainability in medical imaging.

Deep learning has enabled automated medical imaging interpretation
atthelevel of practicing expertsinsome settings'~>. While the potential
benefits of automated diagnostic models are numerous, lack of model
interpretability in the use of ‘black-box’ deep neural networks (DNNs)
represents amajor barrier to clinical trustand adoption*. In fact, it has
beenarguedthat the European Union’srecently adopted General Data
Protection Regulation affirms anindividual’s right to anexplanationin
the context of automated decision-making’. Although theimportance

of DNNinterpretability is widely acknowledged and many techniques
have been proposed, little emphasis has been placed on how best to
quantitatively evaluate these explainability methods®.

Onetypeof DNNinterpretationstrategy widely usedinthe contextof
medicalimagingis based onsaliency (or pixel-attribution) methods’".
Saliency methods produce heat maps highlighting the areas of
the medical image that most influenced the DNN’s prediction. Since
saliency methods provide post-hocinterpretability of models that are
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never exposed to bounding-box annotations or pixel-level segmenta-
tions during training, they are particularly useful in the context of
medicalimaging where ground-truth segmentations can be especially
time-consuming and expensive to obtain. The heat maps help to visual-
ize whether a DNN is concentrating on the same regions of a medical
image that ahuman expert would focus on, rather than concentrating
on a clinically irrelevant part of the medical image or even on con-
founders in the image" . Saliency methods have been widely used
for a variety of medical imaging tasks and modalities including, but
not limited to, visualizing the performance of a convolutional neural
network (CNN) in predicting (1) myocardial infarction'® and hypo-
glycemia” from electrocardiograms, (2) visual impairment’®, refrac-
tive error’® and anaemia® from retinal photographs, (3) long-term
mortality? and tuberculosis® from chest X-ray (CXR) images and (4)
appendicitis” and pulmonary embolism** on computed tomography
scans. However, recent work has shown that saliency methods used to
validate model predictions can be misleading in some cases and may
lead toincreased bias and loss of user trust in high-stakes contexts such
as healthcare” 2, Therefore, a rigorous investigation of the accuracy
andreliability of these strategies is necessary before they are integrated
into the clinical setting®.

Inthis work, we perform a systematic evaluation of seven common
saliency methods in medical imaging (Grad-CAM*°, Grad-CAM++7,
‘integrated gradients™, Eigen-CAM™*, DeepLIFT*, layer-wise relevance
propagation (LRP)* and ‘occlusion®) using three common CNN archi-
tectures (DenseNet121”, ResNet152** and Inception-v4*).Indoing so,
we establish the first human benchmark for CXR segmentation in a
multilabel classification set-up by collecting radiologist segmenta-
tions for ten pathologies using CheXpert, a large publicly available
CXRdataset*’. To compare saliency method segmentations with expert
segmentations, we use two metrics to capture localization accuracy:
(1) mean intersection over union (mloU), a metric that measures the
overlap between the saliency method segmentation and the expert
segmentation, and (2) hitrate, aless strictmetric than mloU that does
not require the saliency method to locate the full extent of a pathol-
ogy. We find that (1) while Grad-CAM generally localizes pathologies
more accurately than the other evaluated saliency methods, all seven
performsignificantly worse compared witha human radiologist bench-
mark (althoughitis difficult to know whether poor localization perfor-
mance is attributable to the model or to the saliency method), (2) the
gap in localization performance between Grad-CAM and the human
benchmark s largest for pathologies that are smaller in size and have
shapes that are more complex, and (3) model confidence is positively
correlated with Grad-CAM localization performance. We publicly
release a development dataset of expert segmentations, which we
call CheXlocalize, to facilitate further research in DNN explainability
for medicalimaging.

Results

Framework for evaluating saliency methods

Seven methods were evaluated—Grad-CAM, Grad-CAM++, integrated
gradients, Eigen-CAM, DeepLIFT, LRP and occlusion—in a multilabel
classification set-up on the CheXpert dataset (Fig. 1a). We ran experi-
ments using three CNN architectures previously used on CheXpert:
DenseNet121, ResNet152 and Inception-v4. For each combination of
saliency method and model architecture, we trained and evaluated an
ensemble of 30 CNNs (see Methods for ensembling details). We then
passed each of the CXRsinthe dataset’s holdout test setinto the trained
ensemble model to obtainimage-level predictions for the following ten
pathologies: ‘airspace opacity’, ‘atelectasis’, ‘cardiomegaly’, ‘consoli-
dation’, ‘edema’, ‘enlarged cardiomediastinum’, ‘lung lesion’, ‘pleural
effusion’,‘pneumothorax’and ‘supportdevices’. Of the 14 observations
labelledinthe CheXpertdataset, ‘fracture’and ‘pleural other’ were not
included in our analysis because they had low prevalence in our test
set (fewer thanten examples), ‘pneumonia’was notincluded because

itisaclinical (as opposed to a radiological) diagnosis and ‘no finding’
was notincludedbecauseitis notapplicable to evaluatinglocalization
performance. For each CXR, we used the saliency method to generate
heat maps, one for each of the ten pathologies, and then applied a
threshold to each heat map to produce binary segmentations (top row,
Fig. 1a). Thresholding is determined per pathology using Otsu’s
method*, which iteratively searches for a threshold value that maxi-
mizes interclass pixel intensity variance. We also conducted a second
thresholding schemeinwhich weiteratively search for athreshold value
that maximizes per-pathology mloU on the validation set. There are
no statistically significant differences between the two thresholding
schemes when compared against the human benchmark (Extended
Data Fig. 1). Additionally, to calculate the hit rate evaluation metric
(described below), we extracted the pixelin the saliency method heat
map with the largest value as the single most representative point on
the CXR for that pathology.

We obtained two independent sets of pixel-level CXR segmenta-
tions on the holdout test set: ground-truth segmentations drawn by
twoboard-certified radiologists (middle row, Fig.1a) and humanbench-
mark segmentations drawnby aseparate group of three board-certified
radiologists (bottom row, Fig. 1a). The human benchmark segmenta-
tions and the saliency method segmentations were compared with
the ground-truth segmentations to establish the human benchmark
localization performance and the saliency method localization per-
formance, respectively. Additionally, for the hit rate evaluation metric,
the radiologists who drew the benchmark segmentations were also
askedtolocate asingle point onthe CXR that was most representative
of the pathology at hand (see Supplementary Figs. 1-11 for detailed
instructions given to theradiologists). Note that the humanbenchmark
localization performance demonstrates interrater variability, and we
use it as areference when evaluating saliency method pipelines.

We used two evaluation metrics to compare segmentations
(Fig.1b). Our primary metric, mloU, measures how much, on average,
either the saliency method or benchmark segmentations overlapped
with the ground-truth segmentations. Our secondary metric, hitrate, is
alessstrict metric that does not require the saliency method or bench-
mark annotatorsto locate the full extent of apathology. Hit rate is based
onthe pointing game set-up*?, in which credit is given if the most rep-
resentative pointidentified by the saliency method or the benchmark
annotatorslies within the ground-truth segmentation. A ‘hit’indicates
that the correct region of the CXR was located regardless of the exact
bounds of the binary segmentations. Localization performanceisthen
calculated as the hit rate across the dataset*’. We report the means of
these metrics (mloU and hit rate) over 1,000 bootstrap replicates on
thetest set, along with the 95% confidence intervals using the 2.5th and
97.5th percentiles of the empirical distribution**. Inaddition to mloU,
wereport the test set precision, recall/sensitivity, and specificity values
ofthe saliency method pipeline and the human benchmark segmenta-
tions to measure segmentation overlap (Extended Data Fig. 2).

Evaluating localization performance

To compare thelocalization performance of the saliency methods with
thehumanbenchmark, we first used Grad-CAM, Grad-CAM++and inte-
grated gradients to run 18 experiments, one for each combination of
saliency method (Grad-CAM, Grad-CAM++ or integrated gradients) and
CNNarchitecture (DenseNet121, ResNet152 or Inception-v4) using one
ofthe two evaluation metrics (mloU or hit rate) (Extended Data Fig. 3).
We also ran experiments to evaluate the localization performances
of DenseNet121 with Eigen-CAM, DeepLIFT, LRP and occlusion. We
foundthat Grad-CAM with DenseNet121generally demonstrated better
localization performance across pathologies and evaluation metrics
than the other combinations of saliency method and architecture.
Accordingly, we compared Grad-CAM + DenseNet121 (saliency method
pipeline) with the human benchmark using both mloU and hit rate.
See Table 1 for localization performance on the test set of all seven
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Fig.1|Framework for evaluating saliency methods. a, Top left: a CXR image
from the holdout test set is passed into an ensemble CNN trained only on CXR
images and their corresponding pathology task labels. The saliency method

is used to generate ten heat maps for the example CXR, one for each task. The
pixel in the heat map with the largest value is determined to be the single most
representative point on the CXR for that pathology. There are three pathologies
presentin this CXR (airspace opacity, pleural effusion and support devices). Top
right: athreshold is applied to the heat maps to produce binary segmentations
for each present pathology. Middle row: two board-certified radiologists were
asked to segment the pathologies that were present in the CXR as determined
by the dataset’s ground-truth labels. Saliency method pipeline annotations

are compared with these ground-truth annotations to determine saliency
method pipeline localization performance. Bottom row: three board-certified

Enlarged cardiomediastinum

radiologists (different from those of the middle row) were also asked to segment
the pathologies that were present in the CXR as determined by the dataset’s
ground-truth labels. In addition, these radiologists were asked to locate the
single point on the CXR that was most representative of each present pathology.
These benchmark annotations are compared with the ground-truth annotations
to determine human benchmark localization performance. b, Left: CXR with
ground-truth and saliency method annotations for pleural effusion. The
segmentations have alow overlap (IoU is 0.078), but the pointing game is a ‘hit’
since the saliency method’s most representative point is inside the ground-truth
segmentation. Right, CXR with ground-truth and human benchmark annotations
for enlarged cardiomediastinum. The segmentations have a high overlap (loU

is 0.682), but the pointing game is a ‘miss’ since the saliency method’s most
representative pointis outside the ground-truth segmentation.

saliency methods using DenseNet121. The localization performance for
each pathologyis reported onthetrue positive slice of the dataset (for
mloU, the true positive slice contains CXRs with both saliency method/
human benchmark segmentations and also ground-truth segmenta-
tions; for hit rate, the true positive slice contains CXRs with both the
most representative point identified by the saliency method/human
benchmark and also the ground-truth segmentation). Localization

performance was calculated in this way so that saliency methods were
not penalized by DNN classification error: while the benchmark radio-
logists were provided with ground-truth labels when annotating the
dataset, saliency method segmentations were created on the basis of
labels predicted by the model. (See Extended Data Fig. 4 for saliency
method pipeline test set localization performance on the full dataset
using mloU.)

Nature Machine Intelligence



Article

https://doi.org/10.1038/s42256-022-00536-x

Table 1| Test set localization performance of saliency methods using DenseNet121

Pathology Grad-CAM Grad-CAM++ Integrated gradients Eigen-CAM DeepLIFT LRP Occlusion
mioU

Airspace opacity 0.248 0.234 0.123 0.293 0m 0Mmz2 0.242
Atelectasis 0.254 0.245 0ne 0.267 0.126 0.109 0.250
Cardiomegaly 0.452 0.346 0.160 0.379 0.167 0.150 0.312
Consolidation 0.408 0.296 0177 0.332 0.088 0.099 0.212
Edema 0.362 0.388 0.073 0.370 0.059 0.047 0.347
Enlarged cardiom. 0.379 0.400 0.154 0.372 0.109 oM7 0.363
Lung lesion 0.101 0.089 0.107 0.089 0.072 0.088 0.087
Pleural effusion 0.235 0.195 0.088 0.249 0.090 0.082 0.215
Pneumothorax 0.213 0.216 0.077 0.218 0.084 0.066 0.214
Support devices 0.163 0.133 0.099 0116 0.086 0.052 0126
Hitrate

Airspace opacity 0.498 0.558 0.606 0.566 0.528 0.566 0.367
Atelectasis 0.501 0.621 0.520 0.530 0.415 0.468 0.343
Cardiomegaly 0.903 0732 0.697 0.709 0.610 0.644 0.515
Consolidation 0.738 0.708 0.624 0.626 0.571 0.283 0.338
Edema 0.746 0.781 0.300 0.758 0.468 0.156 0.469
Enlarged cardiom. 0.818 0.630 0.704 0.612 0.469 0.594 0.767
Lung lesion 0.290 0.290 0.423 0.146 0.497 0.356 0.072
Pleural effusion 0.507 0.347 0.332 0.439 0.408 0.283 0.291
Pneumothorax 0.392 0.489 0.801 0.195 0.801 0.697 0.297
Support devices 0.355 0.364 0.491 0.216 0.598 0.264 0.189

We found that the saliency method pipeline demonstrated signifi-
cantly worse localization performance on the test set when compared
with the human benchmark using both mloU (Fig. 2a) and hit rate
(Fig. 2b) as an evaluation metric, regardless of the model classifica-
tion AUROC (area under the receiver operating characteristic curve).
For five of the ten pathologies, the saliency method pipeline had a
significantly lower mloU than the human benchmark. For example,
the saliency method pipeline had one of the highest AUROC scores of
the ten pathologies for support devices (0.969), but had among the
worst localization performance for support devices when using both
mloU (0.163 [95% confidence interval (CI) 0.154, 0.172]) and hit rate
(0.355[95% C1 0.303, 0.408]) as evaluation metrics. On two patholo-
gies (atelectasis and consolidation) the saliency method pipeline
significantly outperformed the humanbenchmark. Onaverage, across
allten pathologies, mloU saliency method pipeline performance was
24.0% [95% C118.2%, 29.6%] worse than the human benchmark, with
lung lesion displaying the largest gap in performance (76.2% [95% CI
59.1%, 87.5%] worse than the human benchmark) (Extended DataFig. 5).
Consolidation was the pathology on which the mloU saliency method
pipeline performance exceeded the human benchmark the most, by
128.1%. For seven of the ten pathologies, the saliency method pipeline
had asignificantly lower hit rate than the humanbenchmark. On aver-
age, hit rate saliency method pipeline performance was 29.4% [95% CI
23.1%,35.5%] worse than the human benchmark (Extended DataFig. 6),
with lunglesionagaindisplaying the largest gap in performance (65.9%
[95% CI1 35.3%, 91.7%] worse than the human benchmark). The hit
rate saliency method pipeline did not significantly outperform the
human benchmark on any of the ten pathologies; for the remaining
three of the ten pathologies, the hit rate performance differences
between the saliency method pipeline and the human benchmark
were not statistically significant. Therefore, while the saliency method

pipeline significantly underperformed the human benchmark regard-
less of evaluation metric used, the average performance gap was larger
when using hit rate as an evaluation metric than when using mloU as
anevaluation metric.

We compared saliency method pipeline localization performance
using anensemble model withlocalization performance using the top
performingsingle checkpoint for each pathology. We found that on the
test set the single model has worse localization performance thanthe
ensemble model for all pathologies when using mloU and for six of
the ten pathologies when using hit rate (Extended Data Fig. 7).

Characterizing underperformance of saliency method
pipeline

To better understand the underperformance of the saliency method
pipeline localization, we first conducted a qualitative analysis with a
radiologist by visually inspecting both the segmentations produced
by the saliency method pipeline (Grad-CAM with DenseNet121) and the
humanbenchmark segmentations. We found that, in general, saliency
method segmentations fail to capture the geometric nuances of a
given pathology, and instead produce coarse, low-resolution heat
maps. Specifically, our qualitative analysis found that the perfor-
mance of the saliency method was associated with three pathological
characteristics (Fig. 3a): (1) number of instances (when a pathology
had multiple instances on a CXR, the saliency method segmentation
often highlighted one large confluent area, instead of highlighting
each distinct instance of the pathology separately), (2) size (saliency
method segmentations tended to be significantly larger than human
expertsegmentations, often failing to respect clear anatomical bounda-
ries) and (3) shape complexity (the saliency method segmentations
for pathologies with complex shapes frequently included significant
portions of the CXR where the pathology is not present).
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Fig.2|Evaluating localization performance. a, Comparing saliency method
pipeline and human benchmark localization performances on the test set
using mloU. b, Comparing saliency method pipeline and human benchmark
localization performances on the test set using hit rate. For both aand

b, pathologies, along with their DenseNet121 AUROCsS, are sorted on the x axis

Saliency method pipeline
Human benchmark

first by statistical significance of percentage decrease from human benchmark
mloU/hit rate to saliency method pipeline mloU/hit rate (high to low), and then
by percentage decrease from human benchmark mloU/hit rate to saliency
method pipeline mloU/hit rate (high to low).

Informed by our qualitative analysis and previous work in histol-
ogy®, we defined four geometric features for our quantitative analysis
(Fig. 3b): (1) number of instances (for example, bilateral pleural effu-
sion would have two instances, whereas there is only one instance for
cardiomegaly), (2) size (pathology area with respect to the area of
the whole CXR), (3) elongation and (4) irrectangularity (the last two
features measure the complexity of the pathology shape and were

calculated by fitting arectangle of minimum area enclosing the binary
mask). See Extended Data Fig. 8 for the test set distribution of the four
pathological characteristics across all ten pathologies.

For each evaluation metric, weran eight simple linear regressions:
four with the evaluation metric (IoU or hit/miss) of the saliency method
pipeline (Grad-CAM with DenseNet121) as the dependent variable
(to understand the relationship between the geometric features of a
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Fig.3 | Characterizing underperformance of saliency method pipeline.

a, Example CXRs that highlight the three pathological characteristics identified
by our qualitative analysis: (1) left, number of instances; (2) middle, size;

(3) right, shape complexity. b, Example CXRs with the four geometric features
used in our quantitative analysis: (1) top left, number of instances; (2) top right,

Irrectangularity = low (0.24)
Enlarged cardiomediastinum

Irrectangularlity = high (0.78)

Pleural effusion

size = area of segmentation/area of CXR; (3) bottom left, elongation; (4) bottom
right, irrectangularity. Elongation and irrectangularity were calculated by
fitting a rectangle of minimum area enclosing the binary mask (as indicated

by the yellow rectangles). Elongation = maxAxis/minAxis.

Irrectangularity =1- (area of segmentation/area of enclosing rectangle).

pathology and saliency method localization performance), and four
with the difference between the evaluation metrics of the saliency
method pipeline and the human benchmark as the dependent vari-
able (to understand the relationship between the geometric features
of a pathology and the gap in localization performance between the
saliency method pipeline and the human benchmark). Each regres-
sion used one of the four geometric features as a single independent
variable, and only the true positive slice was included in each regres-
sion. Each feature was normalized using min-max normalization
and the regression coefficient can be interpreted as the effect of that
geometric feature on the evaluation metric at hand. See Table 2 for
coefficients from the regressions using both evaluation metrics on
the test set, where we also report the 95% confidence interval and the
Bonferroni-corrected Pvalues based on Student’s ¢ distribution.

Our statistical analysis showed that as the size of a pathology
increased the loU saliency method localization performance improved
(0.566 [95% C10.526, 0.606]). We also found that as elongation and
irrectangularity increased the loU saliency method localization per-
formance worsened (elongation, —0.425[95% C1-0.497,-0.354]; irrec-
tangularity, —0.256 [95% CI -0.292, -0.219]). We observed that the

effects of these three geometric features were similar for hit/miss
saliency method localization performance in terms of levels of
statistical significance and direction of the effects. However, there
was no evidence that the number of instances of a pathology had a
significant effect oneitherloU (-0.115[95% C1-0.220,-0.010]) or hit/
miss (—0.051[95% CI -0.346, 0.244]) saliency method localization.
Therefore, regardless of evaluation metric, saliency method localiza-
tion performance suffered in the presence of pathologies that were
smallinsize and complexinshape.

We found that these same three pathological characteristics—size,
elongationandirrectangularity—characterized thegapinloU localiza-
tion performance between saliency method and human benchmark.
We observed that the gap in hit/miss localization performance was
significantly characterized by all four geometric features (number of
instances, size, elongation and irrectangularity).

Effect of model confidence onlocalization performance

We also conducted statistical analyses to determine whether there was
any correlation between the model’s confidence in its prediction and
saliency method pipeline test set localization performance (Table 3).
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Table 2 | Coefficients from regressions on geometric
features of pathologies

Table 3 | loU: coefficients from regressions on model
assurance

Geometric Coefficient using saliency Coefficient using localization Pathology CXRsincludingall Linear Spearman
feature method localization difference (human positives and false  regression correlation
(independent (dependent variable) benchmark-saliency method) negatives (n) coefficient coefficient
variable) (dependent variable) - N
Airspace opacity 381 0.714 (0.601, 0.577 (0.506,
loU 0.826)*** 0.641)***
Number of -0115(-0.220,-0.010)  -0.072 (-0.237,0.094) Atelectasis 296 0:48910:333,"0.345(0.244,
instances 0.645) 0.444)
0.823)*** 0.670)***
Elongation -0.425 (-0.497,-0.354)***  0.476 (0.362, 0.589)*** T
Consolidation 120 1155 (0.674, 0.384(0.220,
Irrectangularity  -0.256 (-0.292, -0.219)***  0.307 (0.249, 0.366)*** 1.635)*** 0.527)***
Hit/miss Edema 124 0.642 (0.459, 0.548 (0.411,
0.826)*** 0.660)***
Number of -0.051(-0.346, 0.244) 0.470 (0.114, 0.825)*
instances Enlarged 668 1974(1608,  0.428(0.364,
cardiomediastinum 2.340)*** 0.488)***
Size 1.269 (1146, 1.391)*** -0.944 (-1.104, -0.785)*** )
Lung lesion 50 0.218 (0.088, 0.509 (0.268,
Elongation -0.849 (-1.053, -0.646)*** 1110 (0.865, 1.354)*** 0.349)** 0.689)***
Irrectangularity  -0.519 (-0.624, -0.415)***  0.689 (0.564, 0.815)*** Pleural effusion 159 0.632(0.489, 0.690 (0.599,
*P<0.05, ***P<0.001. 0.776) 0.764)
Pneumothorax 1 0.446 (0108, 0.734 (0.240,
0.783)* 0.926)*
We first ran asimple regression for each pathology using the model's 5,001t devices 397 0.211 (0472, 0.468 (0.378,
probability output as the single independent variable and using the 0.250)*** 0.548)***
sgllency meth(?dloU asthe dependent variable. We then performeda All pathologies 2,365 0109(0.083,  0.285(0.248,
simple regression that uses the same approach as above, butincludes 0135)*** 0.322)**

all ten pathologies. For each of the 11 regressions, we used the full
dataset since the analysis of false positives and false negatives was
also of interest. In addition to the linear regression coefficients, we
also computed the Spearman correlation coefficients to capture any
potential nonlinear associations.

We found that for all pathologies the model confidence was posi-
tively correlated with the loU saliency method pipeline performance.
The Pvalues for all coefficients were below 0.001 except for the coef-
ficients for pneumothorax (n =11) and lung lesion (n = 50), the two
pathologies for which we had the fewest positive examples. Of all the
pathologies, model confidence for positive predictions of enlarged
cardiomediastinum had the largest linear regression coefficient with
loU saliency method pipeline performance (1.974, P< 0.001). Model
confidence for positive predictions of pneumothorax had the largest
Spearman correlation coefficient with loU saliency method pipeline
performance (0.734, P< 0.05), followed by pleural effusion (0.690,
P <0.001). Combining all pathologies (n = 2,365), the linear regres-
sion coefficient was 0.109 (95% CI[0.083, 0.135]), and the Spearman
correlation coefficient was 0.285 (95% C1[0.248, 0.322]).

We also performed analogous experiments using hit/miss as the
dependent variable on the true positive slice of the test set (CXRs
with both the most representative point identified by the saliency
method/humanbenchmark and also the ground-truth segmentations)
(Extended Data Fig. 9). Since every heat map contains a maximally
activated point (the pixel with the highest value) regardless of model
probability output, using the full dataset has limited value since false
positives are due to metric set-up and are not associated with model
probability. We found that model confidence was positively correlated
with hit/miss saliency method pipeline performance for four out of
ten pathologies.

Discussion

The purpose of this work was to evaluate the performance of some of
the most commonly used saliency methods for deep learning explain-
ability using a variety of model architectures. We establish the first
human benchmark for CXR segmentationinamultilabel classification
set-up and demonstrate that saliency maps are consistently worse

*P<0.05, **P<0.01, ***P<0.001.

than expert radiologists regardless of model classification AUROC.
We use qualitative and quantitative analyses to establish that saliency
method localization performance is most inferior to expert localiza-
tion performance when a pathology is smaller in size or has shapes
that are more complex, suggesting that deep learning explainability
as aclinical interface may be less reliable and less useful when used
for pathologies with these characteristics. We also show that model
assurance is positively correlated with saliency method localization
performance, which could indicate that saliency methods are safer to
use as adecision aid to clinicians when the model has made a positive
prediction with high confidence.

Because ground-truth segmentations for medical imaging are
time consuming and expensive to obtain, the current norm in medi-
calimaging—bothinresearch and in industry—is to use classification
models on which saliency methods are applied post hoc for localiza-
tion, highlighting the need for investigations into the reliability of these
methodsin clinical settings***". There are public CXR datasets contain-
ingimage-level labels annotated by expert radiologists (for example,
the CheXpert validation set), multilabel bounding-box annotations
(for example, ChestX-ray8** and VinDr-CXR*’) and segmentations for
asingle pathology (for example, SIIM-ACR pneumothorax segmenta-
tion*°). To our knowledge, however, there are no other publicly avail-
able CXR datasets with multilabel pixel-level expert segmentations. By
publicly releasing a development dataset, CheXlocalize, of 234 images
with 643 expert segmentations, we hope to encourage the further
development of saliency methods and other explainability techniques
for medicalimaging.

Our work has several potential implications for human-Al
(artificial intelligence) collaboration in the context of medical
decision-making. Heat maps generated using saliency methods are
advocated as clinical decision support in the hope that they not only
improve clinical decision-making, but also encourage clinicians to
trust model predictions® . Many of the large CXR vendors (https://
annalise.ai/, https://www.lunit.io/en, https://qure.ai/) uselocalization
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methods to provide pathology visualization in their computer-aided
detection products. In addition to being used for clinical interpreta-
tion, saliency method heat maps are also used for the evaluation of CXR
interpretation models, for quality improvement and quality assurance
in clinical practice, and for dataset annotation®*. Explainable Al is criti-
cal in high-stakes contexts such as healthcare, and saliency methods
have been used successfully to develop and understand models gener-
ally. Indeed, we found that the saliency method pipeline significantly
outperformed the humanbenchmark on two pathologies when using
mloU as anevaluation metric. However, our work also suggests that sali-
ency methods are notyetreliable enough to validate individual clinical
decisions made by amodel. We found that saliency method localization
performance, on balance, performed worse than expert localization
across multiple analyses and across many important pathologies (our
findings are consistent with recent work focused onlocalizing asingle
pathology, pneumothorax, in CXRs>’). We hypothesize that this could
beanalgorithmic artefact of saliency methods, whose relatively small
heat maps (14 x 14 for Grad-CAM) are interpolated to the originalimage
dimensions (usually 2,000 x 2,000), resulting in coarse resolutions. If
used inclinical practice, heat maps thatincorrectly highlight medical
images may exacerbate well documented biases (chiefly automation
bias) and erode trust in model predictions (even when model output
is correct), limiting clinical translation®.

Since loU computesthe overlap of two segmentations but pointing
game hit rate better captures diagnostic attention, we suggest using
both metrics when evaluating localization performancein the context
of medicalimaging. While loU isa commonly used metric for evaluat-
ing semantic segmentation outputs, there are inherent limitations to
the metric in the pathological context. This is indicated by our find-
ing that even the human benchmark segmentations had low overlap
with the ground-truth segmentations (the highest expert mloU was
0.720 for cardiomegaly). One potential explanation for this consist-
entunderperformanceis that pathologies can be hard to distinguish,
especially without clinical context. Furthermore, whereas many people
might agree on how to segment, say, a cat or a stop sign in traditional
computer vision tasks, radiologists use a certain amount of clinical
discretion when defining the boundaries of apathology onaCXR. There
canalsobeinstitutional and geographic differences in how radiologists
aretaughttorecognize pathologies, and studies have shown that there
canbe highinterobserver variability in the interpretation of CXRs** 5.
We sought to address this with the hit/miss evaluation metric, which
highlights when two radiologists share the same diagnosticintention,
evenifitis less exact than loU in comparing segmentations directly.
The human benchmark localization using hit rate was above 0.9 for
four pathologies (pneumothorax, cardiomegaly, enlarged cardiome-
diastinum and support devices); these are pathologies for which there
is often little disagreement between radiologists about where the
pathologies are located, even if the expert segmentations are noisy.
Further work is needed to demonstrate which segmentation evalua-
tion metrics, even beyond loU and hit/miss, are more appropriate for
certain pathologies and downstream tasks when evaluating saliency
methods for the clinical setting.

Our work builds upon several studies investigating the validity
of saliency maps for localization®*' and upon some early work on the
trustworthiness of saliency methods to explain DNNs in medical imag-
ing"’. However, as recent work has shown™, evaluating saliency meth-
odsisinherently difficult given that they are post-hoc techniques. To
illustrate this, consider the following models and saliency methods as
described by some oracle: (1) amodel M_bad that has perfect AUROC for
agivenimage classification task, but that we know does not localize well
(because the model picks up on confoundersintheimage); (2) amodel
M_good that also has perfect AUROC, but that we know does localize
well (that s, is looking at relevant regions of the image); (3) a saliency
method S_bad that does not properly reflect the model’s attention;
(4) asaliency method S_good that does properly reflect the model’s

attention. Let us say that we are evaluating the following pipeline: we
first classify an image and we then apply a saliency method post hoc.
Imagine that our evaluation reveals poor localization performance as
measured by mloU or hit rate (as was the case inour findings). There are
three possible pipelines (combinations of model and saliency method)
thatwouldlead to this scenario: (1) M_bad +S_good; (2) M_good + S_bad;
(3) M_bad + S_bad. The first scenario (M_bad + S_good) is the one for
which saliency methods were originally intended: we have a work-
ing saliency method that properly alerts us to models picking up on
confounders. The second scenario (M_good + S_bad) is our nightmare
scenario: we have a working model whose attention is appropriately
directed, but we reject it on the basis of a poorly localizing saliency
method. Because all three scenarios result in poor localization per-
formance, it is difficult—if not impossible—to know whether poor
localization performanceis attributable to the model or to the saliency
method (or to both). While we cannot say whether models or saliency
methods are failing in the context of medical imaging, we can say that
we should not rely on saliency methods to evaluate model localiza-
tion. Future work should explore potential techniques for localization
performance attribution.

There are several limitations of our work. First, we did not investi-
gatetheimpact of pathology prevalence inthe training data onsaliency
method localization performance. Second, some pathologies, such
as effusions and cardiomegaly, are in similar locations across frontal
view CXRs, while others, suchaslesions and opacities, can vary inloca-
tions across CXRs. Future work could investigate how thelocations of
pathologies on a CXR in the training/test data distribution, and the
consistency of these locations, affect saliency method localization
performance. Third, while we compared saliency-method-generated
pixel-level segmentations with human expert pixel-level segmenta-
tions, future work might explore how saliency method localization
performance changes when comparing bounding-box annotations,
instead of pixel-level segmentations. Fourth, we explored post-hoc
interpretability methods given their prevalence in the context of medi-
calimaging, but we hope that by publicly releasing our development
dataset of pixel-level expert segmentations we can facilitate the devel-
opment of models that make use of ground-truth segmentations during
training®. Fifth, the lack of a given finding can in certain cases inform
clinical diagnoses. Acommon example of thisis the lack of normal lung
tissue pattern towards the edges of the thoracic cage, whichis used to
detect pneumothorax. For any characteristic pattern, both the absence
andthe presence provide diagnostic information to the radiologist. For
example, the absence of a pleural effusion pattern is also used to rule
outpleural effusion. For any characteristic radiological pattern, both
the presence and the absence contribute to the final radiology report.
Future work can explore counterfactual visual explanations that are
similar to the counterfactual diagnostic process of aradiologist. Sixth,
future work should further explore the potentially confounding effect
of model calibration on the evaluation of saliency methods, especially
when using segmentation, as opposed to classification, models. Finally,
the impact of saliency methods on the trust and efficacy of users is
underexplored.

In conclusion, we present a rigorous evaluation of a range of
saliency methods and a dataset of pixel-level expert segmentations,
which canserve as afoundation for future work exploring deep learn-
ing explainability techniques. This workis areminder that care should
be taken when leveraging common saliency methods to validate indi-
vidual clinical decisions in deep learning-based workflows for medical
imaging.

Methods

Ethical and information governance approvals

A formal review by the Stanford Institutional Review Board was
conducted for the original collection of the CheXpert dataset.
The Institutional Review Board waived the requirement to obtain
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informed consent as the data were retrospectively collected and fully
anonymized.

Dataset and clinical taxonomy. Dataset description. The localization
experiments were performed using CheXpert, a large public dataset
for CXRinterpretation. The CheXpert dataset contains 224,316 CXRs
for 65,240 patients labelled for the presence of 14 observations (13
pathologies and an observation of no finding) as positive, negative
or uncertain. The CheXpert validation set consists of 234 CXRs from
200 patients randomly sampled from the full dataset and was labelled
according to the consensus of three board-certified radiologists. The
test set consists of 668 CXRs from 500 patients not included in the
training or validation sets and was labelled according to the consensus
of five board-certified radiologists. See Extended Data Fig. 10 for test
set summary statistics. ‘Lung opacity’ in the CheXpert dataset is the
equivalent of airspace opacity in the CheXlocalize dataset.

Ground-truth segmentations. The CXRs in our validation set and test
set were manually segmented by two board-certified radiologists with
18 and 27 years of experience, using the annotation software tool MD.ai
(https://www.md.ai/) (Supplementary Figs. 12-14). The radiologists
were asked to contour the region of interest for all observationsin the
CXRsforwhich there was a positive ground-truthlabelin the CheXpert
dataset. There were several cases in which the radiologists did not draw
acertain pathology segmentation ona CXR even though the CXRhad a
positive ground-truth label for that pathology: airspace opacity on one
CXR, atelectasis onone CXR, edemaontwo CXRs, enlarged cardiomedi-
astinumonone CXRand supportdevices on one CXR. For apathology
with multipleinstances, all theinstances were contoured. For support
devices, radiologists were asked to contour any implanted or invasive
devices (including pacemakers, peripherally inserted central catheters/
central catheters, chest tubes, endotracheal tubes, feeding tubes and
stents), and toignore electrocardiography lead wires or external stick-
ersvisiblein the CXR.

Benchmark segmentations. To evaluate expert performance onthe test
setusing loU, three radiologists, certified in Vietnam with 9,10 and 18
years of experience, were asked to segment the regions of interest for
all observationsinthe CXRs for which there was a positive ground-truth
label in the CheXpert dataset. These radiologists were also provided
with the same instructions for contouring as were provided to the
radiologists drawing the ground-truth segmentations. To extract the
maximally activated point from the benchmark segmentations, we
asked the same radiologists tolocate each pathology presentoneach
CXR using only a single most representative point for that pathology
onthe CXR (see Supplementary Figs.1-11for the detailed instructions
given to the radiologists). There was no overlap between these three
radiologists and the two who drew the ground-truth segmentations.

Classification network architecture and training protocol. Multila-
bel classification model. The model takes as input a single-view CXR
and outputs a probability for each of the 14 observations. If more than
one view is available, the model outputs the maximum probability of
the observations across the views. Each CXR was resized to 320 x 320
pixels and normalized before it was fed into the network. We used the
same image resolutions as CheXpert*° and CheXNet?, which dem-
onstrated radiologist-level performance on external test sets with
320 x 320 images. There are models that are commercially deployed
and have similar dimensions. For example, the architecture used by
medical Al software vendor Annalise.ai® is based on EfficientNet®,
whichtakesinput of 224 x 224. CXRs were normalized before being fed
into the network by subtracting the mean of allimages in the CheXpert
training set and then dividing by the s.d. of allimages in the CheXpert
training set. The model architectures DenseNet121, ResNet152 and
Inception-v4 were used. Cross-entropy loss was used to train the model.

The Adam optimizer® was used with default 8 parameters of ,= 0.9
and S,=0.999. The learning rate was tuned for the different model
architectures using grid search (over learning rates of 1 x1073,1x10™*
and 1x107%). The best learning rate for each architecture was1x 10™
for DenseNet121,1 x 10~ for ResNet152 and 1 x 107 for Inception-v4.
Batches were sampled using a fixed batch size of 16 images.

Ensembling. We use an ensemble of checkpoints to create both predic-
tions and saliency maps to maximize model performance. To capture
uncertaintiesinherentinradiographinterpretation, we train our mod-
els using four uncertainty handling strategies outlined in CheXpert:
ignoring, zeros, ones and three-class classification. For each of the
four uncertainty handling strategies, we train our model three separate
times, each time saving the ten checkpoints across the three epochs
with the highest average AUROC across five observations selected for
their clinical importance and prevalence in the validation set: atelec-
tasis, cardiomegaly, consolidation, edema and pleural effusion. In
total, after training, we have saved 4 x 30 =120 checkpoints foragiven
model. Then, from the 120 saved checkpoints for that model, we select
the ten top performing checkpoints for each pathology. For each CXR
and each task, we compute the predictions and saliency maps using the
relevant checkpoints. We then take the mean both of the predictions
and of the saliency maps to create the final set of predictions and sali-
ency maps for the ensemble model. See Supplementary Table 1for the
performance of eachmodel architecture (DenseNet121, ResNet152 and
Inception-v4) with each of the pathologies.

Evaluating localization performance. Saliency methods were used
tovisualize the decision made by the classification network. Each sali-
ency map was resized to the original image dimension using bilinear
interpolation. It was then normalized using min-max normalization
and converted into a binary segmentation using binary thresholding
(Otsu’smethod). For occlusion, we used awindow size of 40 and astride
of 40 for each CXR.

Localization performance of each segmentation was evaluated
usingloUscore. TheloUistheratio between the area of overlap and the
areaof union between the ground-truth and the predicted segmenta-
tions, ranging from O to1(0 signifies no overlap and 1signifies perfectly
overlapping segmentations). We report the mloU over 1,000 bootstrap
replicates onthe test set, along with the 95% confidence intervals using
the 2.5thand 97.5th percentiles of the empirical distribution.

For the evaluation of DenseNet121 + integrated gradients using
loU, we applied box filtering of kernel size 100 to smooth the pixelated
map. For the evaluation of ResNet152 + integrated gradients and of
Inception-v4 + integrated gradients using loU, we applied box filtering
of kernelsize 50.For the evaluation of DeepLIFT using loU, we applied
box filtering of kernel size 50. For the evaluation of LRP using loU, we
applied box filtering of kernel size 80. The kernel sizes were tuned on
the validation set. The noisy map is not a concern for hit rate because
asingle maximum pixel is extracted for the entire image.

InExtended DataFig.1, we report mloU localization performance
using different saliency map thresholding values. We first applied
min-max normalizations to the saliency maps so that each value is
transformed into adecimal between 0 and 1. We then passed inarange
ofthreshold values from 0.2to 0.8 to create binary segmentations and
calculated the mloU score per pathology under each threshold onthe
validation set.

InExtended Data Fig. 2, we report the precision, recall/sensitivity,
and specificity values of the saliency method pipeline and the human
benchmark segmentations on the test set.

For this, we treat each pixel in the saliency method pipeline and
the human benchmark segmentations as a classification, use each
pixelin the ground-truth segmentation as the ground-truthlabel, and
calculate precision, recall/sensitivity, and specificity over all CXRs for
each pathology. Precision is defined as total number of true positive
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pixels/(total number of true positive + false positive pixels). Recall is
defined as total number of true positive pixels/(total number of true
positive + false negative pixels). Specificity is defined as total number
of true negative pixels/(total number of true negative + false positive
pixels).

InExtended Data Fig. 4, we report the saliency method pipeline test
set localization performance on the full dataset using mloU. For this,
we ensure that the final binary segmentationis consistent with model
probability output by applying another layer of thresholding such that
the segmentation mask produces all zerosif the predicted probability
is below a chosen level. The probability threshold is searched on the
interval of [0, 0.8] with steps of 0.1. The exact value is determined per
pathology by maximizing the mloU on the validation set.

In Extended Data Figs. 5 and 6, we report the percentage decrease
from human benchmark localization performance to saliency method
pipeline localization performance on the test set. To obtain the 95%
confidence interval per pathology on the percentage decrease from
human benchmarklocalization performance to saliency method pipe-
linelocalization performance, we first extracted the percentage decrease
statistic ((humanbenchmarkmloU or hitrate — saliency method pipeline
mloU or hit rate]/human benchmark mloU or hit rate x 100) from each
ofthe1,000 humanbenchmarkand the 1,000 saliency method pipeline
mloU/hit rate bootstrap replicates for each pathology. In doing so, we
created thebootstrap distribution of the percentage decrease statistic.
We reported the 95% Cl using the 2.5th and 97.5th percentiles of the
empirical distribution. To obtain the 95% Cl on the average percentage
decrease over all pathologies, the methodology is the same: we created
bootstrap replicates of the average human benchmark and saliency
method pipeline mloUs/hit rates over all pathologies, extracted the
percentage decrease statisticfromeachreplicate and thenreported the
95% Clusing the 2.5thand 97.5th percentiles of the empirical distribution.

Statistical analyses

Pathology characteristics. The pathology characteristics used in
all regressions were calculated on the ground-truth annotations. The
four characteristics are defined as follows. (1) Number of instances is
the number of separate segmentations drawn by the radiologist for
agiven pathology. (2) Size is the area of the pathology divided by the
total image area. (3), (4) Elongation and irrectangularity are geomet-
ric features that measure shape complexities. They were designed to
quantify what radiologists qualitatively describe as focal or diffused.
To calculate the metrics, a rectangle of minimum area enclosing the
contour is fitted to each pathology. Elongation is defined as the ratio
of therectangle’slonger side toshorterside. Irrectangularity =1- (area
of segmentation/area of enclosing rectangle), with values ranging from
0tol(1beingveryirrectangular). Whenthere were multipleinstances
within one pathology, we used the characteristics of the dominant
instance (largestin perimeter). Allgeometric features are normalized
using min—-max normalization per pathology before aggregation so
that they are comparable on scales of magnitudes.

Model confidence. We used the probability output of the DNN archi-
tecture formodel confidence. The probabilities were on a similar scale
of 0-1and we did not apply min-max normalization. We report the 95%
confidence interval and P value of the regression coefficients using
Student’s t distribution.

For the statistical analyses on the full dataset to determine whether
there was any correlation between the model’s confidenceinits predic-
tion and saliency method pipeline performance using loU (Table 3), we
ensured that the final binary segmentation was consistent with model
probability output by applying another layer of thresholding such that
the segmentation mask produced all zeros if the predicted probability
wasbelow a chosenlevel. The probability threshold is searched on the
interval of [0, 0.8] with steps of 0.1. The exact value is determined per
pathology by maximizing the mloU on the validation set.

For the statistical analyses to determine whether there was any
correlation between the model’s confidence inits prediction and sali-
ency method pipeline performance using hit/miss (Extended Data
Fig.9), weusedthetrue positivesslice of the dataset (CXRs with both the
most representative point identified by the saliency method/human
benchmarkand also the ground-truth segmentation). Since every heat
map contains a maximally activated point (the pixel with the highest
value) regardless of model probability output, using the full dataset
has limited value since false positives are due to metric set-up and are
not associated with model probability.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The CheXlocalize dataset is available here: https://stanfordaimi.
azurewebsites.net/datasets/abfb76e5-70d5-4315-badc-c94dd82e3dé6d.
The CheXpert datasetis available here https://stanfordmligroup.github.
io/competitions/chexpert/.

Code availability

The code used to produce our results is available in the following pub-
lic repository under the MIT License: https://github.com/rajpurkar-
lab/cheXlocalize. The version used for this publication is available at
https://doi.org/10.5281/zenodo0.6973536%.
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Extended Data Fig.1| mloU localization performance of the saliency method
pipeline on the test set using threshold values tuned on the validation set.

a, We first applied min-max normalization to the Grad-CAM saliency maps so
that each value gets transformed into a decimal between 0 and 1. We then passed
inarange of threshold values from 0.2 to 0.8 to create binary segmentations and
plotted the mloU score per pathology under each threshold on the validation
set. The threshold that gives the max mloU for each pathology is marked with an
“X”. Pathologies are sorted alphabetically and shown in two plots for readability.

b, Comparing mloU localization performances of the saliency method pipeline
onthetest set (using the best thresholds tuned on the validation set) and the
human benchmark. We found that the saliency method pipeline outperformed
the human benchmark on two pathologies and underperformed the human
benchmark on five pathologies. For the remaining three pathologies, the
performance differences were not statistically significant. This finding is
consistent with what we report in the manuscript using Otsu’s method.
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precision recall/sensitivity specificity
saliency method human saliency method human saliency method human
paticiosy pipeline benchmark pipeline benchmark pipeline benchmark
Airspace Opacity 0.194 0.526 0.638 0.328 0.838 0.982
Atelectasis 0.119 0.838 0.593 0.111 0.852 0.999
Cardiomegaly 0.277 0.947 0.621 0.728 0.911 0.998
Consolidation 0.045 0.701 0.639 0.158 0.915 1.000
Edema 0.114 0.753 0.652 0.330 0.848 0.997
Enlarged Cardiom.  0.454 0.905 0.467 0.622 0.931 0.992
Lung Lesion 0.003 0.614 0.797 0.469 0.887 1.000
Pleural Effusion 0.052 0.653 0.673 0.154 0.806 0.999
Pneumothorax 0.005 0.838 0.786 0.459 0.866 1.000
Support Devices 0.120 0.849 0.510 0.425 0.860 0.997
Extended Data Fig. 2| Precision, recall/sensitivity, and specificity values of segmentation as the ground-truth label, and calculated the precision, recall/
the saliency method pipeline and the human benchmark segmentations on sensitivity, and specificity over all CXRs for each pathology. For each pathology

the test set. We treated each pixel in the saliency method pipelineand thehuman  and each metric, we highlight the higher of the two (saliency method pipeline or
benchmark segmentations as a classification, used each pixel in the ground-truth ~ human benchmark) in bold.
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Grad-CAM Grad-CAM++ Integrated Gradients
pathology DenseNet121 ResNet152 Inception-v4  DenseNet121 ResNet152 Inception-v4  DenseNet121 ResNet152 Inception-v4
mloU

Airspace Opacity 0.248 0.194 0.090 0.234 0.198 0.115 0.123 0.119 0.052
Atelectasis 0.254 0.221 0.115 0.245 0.210 0.106 0.116 0.115 0.064
Cardiomegaly 0.452 0.424 0.120 0.346 0.257 0.196 0.160 0.154 0.089
Consolidation 0.408 0.334 0.079 0.296 0.245 0.130 0.177 0.112 0.069
Edema 0.362 0.240 0.203 0.388 0.345 0.266 0.073 0.062 0.099
Enlarged Cardiom.  0.379 0.272 0.065 0.400 0.382 0.295 0.154 0.152 0.094
Lung Lesion 0.101 0.066 0.003 0.089 0.069 0.045 0.107 0.063 0.001
Pleural Effusion 0.235 0.204 0.120 0.195 0.176 0.090 0.088 0.091 0.067
Pneumothorax 0.213 0.171 0.088 0.216 0.184 0.124 0.077 0.070 0.078
Support Devices 0.163 0.147 0.116 0.133 0.126 0.099 0.099 0.074 0.066
hit rate
Airspace Opacity 0.498 0.428 0.106 0.558 0.522 0.148 0.606 0.586 0.122
Atelectasis 0.501 0.490 0.062 0.621 0.621 0.118 0.520 0.453 0.187
Cardiomegaly 0.903 0.915 0.126 0.732 0.297 0.493 0.697 0.748 0.268
Consolidation 0.738 0.797 0.030 0.708 0.600 0.284 0.624 0.538 0.115
Edema 0.746 0.432 0.385 0.781 0.745 0.457 0.300 0.350 0.180
Enlarged Cardiom. 0.818 0.627 0.030 0.630 0.631 0.731 0.704 0.730 0.205
Lung Lesion 0.290 0.146 0.000 0.290 0.146 0.000 0.423 0.211 0.000
Pleural Effusion 0.507 0.499 0.133 0.347 0.473 0.107 0.332 0.400 0.182
Pneumothorax 0.392 0.600 0.000 0.489 0.698 0.097 0.801 0.498 0.097
Support Devices 0.355 0.287 0.133 0.364 0.334 0.150 0.491 0.442 0.324

Extended DataFig. 3| Test set localization performance for each combination of saliency method and CNN architecture. For each pathology and saliency
method, we highlight the highest performing CNN architecture in bold.
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Extended Data Fig. 4 | Saliency method pipeline test set localization
performance on the full dataset using mloU. True negatives (CXRs whose
ground-truth labelis negative for a given pathology and for which there were
neither humanbenchmark nor saliency method pipeline segmentations for
that pathology) were excluded from the metric calculation. To control for false
positives, we ensure that the final binary segmentation is consistent with model
probability output by applying another layer of thresholding such that the

= -
1 B
Pneumothorax  A. Opacity Consolidation Pleural Effusion  Atelectasis

Saliency Method Pipeline

Human Benchmark

segmentation mask produced all zeros if the predicted probability was below
achosenlevel. The probability threshold is searched on the interval of [0,0.8]
with steps of 0.1. The exact value is determined per pathology by maximizing the
mloU on the validation set. We found that on the full dataset, for seven of the 10
pathologies, the saliency method pipeline had a significantly lower mloU than
the humanbenchmark.
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Extended DataFig. 5| Percentage decrease from humanbenchmark mloU to

pathology benchmark mioU  pipeling miol  (85% O

Lung Lesion 0.426 0.101 76.2 (59.1, 87.5)
Support Devices 0.444 0.163 63.3 (60.8, 65.8)
Pneumothorax 0.435 0.213 50.9 (14.6, 69.5)
Cardiomegaly 0.720 0.452 37.2 (34.0, 40.4)
Enlarged Cardiom.  0.569 0.379 33.4 (29.0, 37.4)
Airspace Opacity 0.260 0.248 4.8 (-6.1, 14.6)
Pleural Effusion 0.219 0.235 -7.6 (-34.5,13.3)
Edema 0.335 0.362 -7.9 (-19.7, 2.6)
Atelectasis 0.124 0.254 -104.4 (-134.2, -78.2)
Consolidation 0.179 0.408 -128.1 (-226.8, -74.5)
Average 0.371 0.282 24.0 (18.2, 29.6)

saliency method pipeline mloU on the test set. Pathologies are sorted first by

statistical significance of percentage decrease from human benchmark mloU to

saliency method pipeline mloU (high to low), and then by percentage decrease
from humanbenchmark mloU to saliency method pipeline mloU (high to low).
We use 95% bootstrap confidence interval.
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pathology It:;:::e:':nark :?::ﬁ:g method :/;;,Z‘:Cr;ase

hit rate (%) hit rate (%)
Lung Lesion 0.850 0.290 65.9 (35.3, 91.7)
Support Devices 0.933 0.355 61.9 (56.2, 67.5)
Pneumothorax 1.000 0.392 60.8 (27.3, 92.3)
Atelectasis 0.870 0.501 42.4 (33.1, 51.0)
Pleural Effusion 0.718 0.507 29.4 (14.3, 42.5)
Enlarged Cardiom.  0.957 0.818 14.5 (9.6, 19.2)
Cardiomegaly 0.972 0.903 7.1 (2.1,11.8)
Airspace Opacity 0.559 0.498 10.9 (-2.0, 23.1)
Edema 0.769 0.746 3.0 (-13.2, 18.5)
Consolidation 0.510 0.738 -44.7 (-130.0, 0.0)
Average 0.814 0.575 29.4 (23.1, 35.5)

Extended DataFig. 6 | Percentage decrease from humanbenchmark hitrate
to saliency method pipeline hit rate on the test set. Pathologies are sorted
first by statistical significance of percentage decrease from human benchmark

hit rate to saliency method pipeline hit rate (high to low), and then by percentage
decrease from humanbenchmark hit rate to saliency method pipeline hit rate
(high to low). We use 95% bootstrap confidence interval.
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pathology ensemble model single checkpoint
mloU
Airspace Opacity 0.248 0.241
Atelectasis 0.254 0.233
Cardiomegaly 0.452 0.419
Consolidation 0.408 0.369
Edema 0.362 0.360
Enlarged Cardiom.  0.379 0.297
Lung Lesion 0.101 0.099
Pleural Effusion 0.235 0.205
Pneumothorax 0.213 0.181
Support Devices 0.163 0.150
hit rate
Airspace Opacity 0.498 0.534
Atelectasis 0.501 0.504
Cardiomegaly 0.903 0.846
Consolidation 0.738 0.711
Edema 0.746 0.749
Enlarged Cardiom. 0.818 0.704
Lung Lesion 0.290 0.286
Pleural Effusion 0.507 0.390
Pneumothorax 0.392 0.491
Support Devices 0.355 0.312
Extended Data Fig. 7| Test set saliency method pipeline localization the model (ensemble or single checkpoint) that has the higher metric, and we
performance using an ensemble model vs. using the top performing single underlineitif the difference is statistically significant (using 95% bootstrap
checkpoint for each pathology. For each pathology, we highlight in bold confidence interval).
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Extended Data Fig. 8 | Test set distribution of four geometric features across all 10 pathologies. The black horizontal line in each box indicates the median feature
value for that pathology, and each successive level outward contains half of the remaining data. The height of the box indicates the range of feature values in the

quantile.
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CXRs including all Linear Spearman
pathology positives and regression correlation
false negatives (n) coefficient coefficient

Airspace Opacity 309 1.080 (0.707, 1.453) *** 0.284 (0.178, 0.383) ***
Atelectasis 177 0.481 (-0.086, 1.047) 0.076 (-0.072, 0.221)
Cardiomegaly 175 0.206 (0.006, 0.406) * 0.185 (0.038, 0.324) *
Consolidation 35 1.219 (-0.204, 2.642) 0.324 (-0.011, 0.593)
Edema 83 0.259 (-0.226, 0.745) 0.168 (-0.050, 0.370)
Enlarged Cardiom. 297 0.667 (-0.153, 1.487) 0.191 (0.078, 0.298) ***
Lung Lesion 14 0.657 (-0.825, 2.139) 0.392 (-0.175, 0.764)
Pleural Effusion 120 1.009 (0.533, 1.485) *** 0.347 (0.179, 0.496) ***
Pneumothorax 10 0.342 (-1.549, 2.233) 0.142 (-0.535, 0.708)
Support Devices 314 0.119 (-0.120, 0.358) 0.102 (-0.009, 0.210)
All pathologies 1534 -0.319 (-0.399, -0.239) ***  -0.186 (-0.234, -0.138) ***

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001

Extended Data Fig. 9 | Hit/miss: Coefficients from regressions on model
assurance. Statistical analysis to determine whether there was any correlation
between the model’s confidenceinits prediction and saliency method pipeline
performance using hit/miss. We used the true positive slice of the dataset (CXRs
withboth the most representative point identified by the saliency method/

humanbenchmark and also the ground-truth segmentation). Since every heat
map contains amaximally activated point (the pixel with the highest value)
regardless of model probability output, using the full dataset has limited value
since false positives are due to metric set up and are not associated with model
probability.
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Extended Data Fig.10 | Test set summary statistics.

sample size

Number studies

Number CXRs

pathology

Airspace Opacity
Atelectasis
Cardiomegaly
Consolidation

Edema

Enlarged Cardiom.

Lung Lesion
Pleural Effusion
Pneumothorax

Support Devices

500

668

CXRs (n)

309
177
175
35
83

297

314

No pathology identified 169
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Data collection  The segmentations for the chest X-rays were collected using software provided by MD.ai.

Data analysis We used python 3.8.3 and python statsmodels v0.12.2 for data analysis.
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- A description of any restrictions on data availability

The CheXlocalize dataset is available here: https://stanfordaimi.azurewebsites.net/datasets/abfb76e5-70d5-4315-badc-c94dd82e3d6d. The CheXpert dataset is
available here https://stanfordmlgroup.github.io/competitions/chexpert/.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We use 224,314 chest X-ray images from 65,240 patients for model training. For the test set, we selected samples such that we got roughly 20
examples per class.
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Data exclusions  No data was excluded.

Replication The code used to generate segmentations from saliency method heat maps, fine-tune segmentation thresholds, generate segmentations
from human annotations, and evaluate localization performance is available in the following public repository under the MIT License: https://
github.com/rajpurkarlab/cheXlocalize. The version used for this publication is available at https://doi.org/10.5281/zenodo.681628869.

Randomization  We didn't require randomization as no human subject evaluation was performed.

Blinding We didn't require blinding as no human subject evaluation was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data
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