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Benchmarking saliency methods for chest 
X-ray interpretation
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Steven Q. H. Truong4, Chanh D. T. Nguyen4,5, Van-Doan Ngo6, Jayne Seekins7, 
Francis G. Blankenberg7, Andrew Y. Ng2, Matthew P. Lungren3 and 
Pranav Rajpurkar    8 

Saliency methods, which produce heat maps that highlight the areas of 
the medical image that influence model prediction, are often presented 
to clinicians as an aid in diagnostic decision-making. However, rigorous 
investigation of the accuracy and reliability of these strategies is necessary 
before they are integrated into the clinical setting. In this work, we 
quantitatively evaluate seven saliency methods, including Grad-CAM, 
across multiple neural network architectures using two evaluation metrics. 
We establish the first human benchmark for chest X-ray segmentation 
in a multilabel classification set-up, and examine under what clinical 
conditions saliency maps might be more prone to failure in localizing 
important pathologies compared with a human expert benchmark. We 
find that (1) while Grad-CAM generally localized pathologies better than 
the other evaluated saliency methods, all seven performed significantly 
worse compared with the human benchmark, (2) the gap in localization 
performance between Grad-CAM and the human benchmark was largest 
for pathologies that were smaller in size and had shapes that were more 
complex, and (3) model confidence was positively correlated with Grad-CAM 
localization performance. Our work demonstrates that several important 
limitations of saliency methods must be addressed before we can rely on 
them for deep learning explainability in medical imaging.

Deep learning has enabled automated medical imaging interpretation 
at the level of practicing experts in some settings1–3. While the potential 
benefits of automated diagnostic models are numerous, lack of model 
interpretability in the use of ‘black-box’ deep neural networks (DNNs) 
represents a major barrier to clinical trust and adoption4–6. In fact, it has 
been argued that the European Union’s recently adopted General Data 
Protection Regulation affirms an individual’s right to an explanation in 
the context of automated decision-making7. Although the importance 

of DNN interpretability is widely acknowledged and many techniques 
have been proposed, little emphasis has been placed on how best to 
quantitatively evaluate these explainability methods8.

One type of DNN interpretation strategy widely used in the context of 
medical imaging is based on saliency (or pixel-attribution) methods9–12.  
Saliency methods produce heat maps highlighting the areas of  
the medical image that most influenced the DNN’s prediction. Since 
saliency methods provide post-hoc interpretability of models that are 
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it is a clinical (as opposed to a radiological) diagnosis and ‘no finding’ 
was not included because it is not applicable to evaluating localization 
performance. For each CXR, we used the saliency method to generate 
heat maps, one for each of the ten pathologies, and then applied a 
threshold to each heat map to produce binary segmentations (top row,  
Fig. 1a). Thresholding is determined per pathology using Otsu’s 
method41, which iteratively searches for a threshold value that maxi-
mizes interclass pixel intensity variance. We also conducted a second 
thresholding scheme in which we iteratively search for a threshold value 
that maximizes per-pathology mIoU on the validation set. There are 
no statistically significant differences between the two thresholding 
schemes when compared against the human benchmark (Extended 
Data Fig. 1). Additionally, to calculate the hit rate evaluation metric 
(described below), we extracted the pixel in the saliency method heat 
map with the largest value as the single most representative point on 
the CXR for that pathology.

We obtained two independent sets of pixel-level CXR segmenta-
tions on the holdout test set: ground-truth segmentations drawn by 
two board-certified radiologists (middle row, Fig. 1a) and human bench-
mark segmentations drawn by a separate group of three board-certified 
radiologists (bottom row, Fig. 1a). The human benchmark segmenta-
tions and the saliency method segmentations were compared with 
the ground-truth segmentations to establish the human benchmark 
localization performance and the saliency method localization per-
formance, respectively. Additionally, for the hit rate evaluation metric, 
the radiologists who drew the benchmark segmentations were also 
asked to locate a single point on the CXR that was most representative 
of the pathology at hand (see Supplementary Figs. 1–11 for detailed 
instructions given to the radiologists). Note that the human benchmark 
localization performance demonstrates interrater variability, and we 
use it as a reference when evaluating saliency method pipelines.

We used two evaluation metrics to compare segmentations  
(Fig. 1b). Our primary metric, mIoU, measures how much, on average, 
either the saliency method or benchmark segmentations overlapped 
with the ground-truth segmentations. Our secondary metric, hit rate, is 
a less strict metric that does not require the saliency method or bench-
mark annotators to locate the full extent of a pathology. Hit rate is based 
on the pointing game set-up42, in which credit is given if the most rep-
resentative point identified by the saliency method or the benchmark 
annotators lies within the ground-truth segmentation. A ‘hit’ indicates 
that the correct region of the CXR was located regardless of the exact 
bounds of the binary segmentations. Localization performance is then 
calculated as the hit rate across the dataset43. We report the means of 
these metrics (mIoU and hit rate) over 1,000 bootstrap replicates on 
the test set, along with the 95% confidence intervals using the 2.5th and 
97.5th percentiles of the empirical distribution44. In addition to mIoU, 
we report the test set precision, recall/sensitivity, and specificity values 
of the saliency method pipeline and the human benchmark segmenta-
tions to measure segmentation overlap (Extended Data Fig. 2).

Evaluating localization performance
To compare the localization performance of the saliency methods with 
the human benchmark, we first used Grad-CAM, Grad-CAM++ and inte-
grated gradients to run 18 experiments, one for each combination of 
saliency method (Grad-CAM, Grad-CAM++ or integrated gradients) and 
CNN architecture (DenseNet121, ResNet152 or Inception-v4) using one 
of the two evaluation metrics (mIoU or hit rate) (Extended Data Fig. 3).  
We also ran experiments to evaluate the localization performances 
of DenseNet121 with Eigen-CAM, DeepLIFT, LRP and occlusion. We 
found that Grad-CAM with DenseNet121 generally demonstrated better 
localization performance across pathologies and evaluation metrics 
than the other combinations of saliency method and architecture. 
Accordingly, we compared Grad-CAM + DenseNet121 (saliency method 
pipeline) with the human benchmark using both mIoU and hit rate. 
See Table 1 for localization performance on the test set of all seven 

never exposed to bounding-box annotations or pixel-level segmenta-
tions during training, they are particularly useful in the context of 
medical imaging where ground-truth segmentations can be especially 
time-consuming and expensive to obtain. The heat maps help to visual-
ize whether a DNN is concentrating on the same regions of a medical 
image that a human expert would focus on, rather than concentrating 
on a clinically irrelevant part of the medical image or even on con-
founders in the image13–15. Saliency methods have been widely used 
for a variety of medical imaging tasks and modalities including, but 
not limited to, visualizing the performance of a convolutional neural 
network (CNN) in predicting (1) myocardial infarction16 and hypo-
glycemia17 from electrocardiograms, (2) visual impairment18, refrac-
tive error19 and anaemia20 from retinal photographs, (3) long-term 
mortality21 and tuberculosis22 from chest X-ray (CXR) images and (4) 
appendicitis23 and pulmonary embolism24 on computed tomography 
scans. However, recent work has shown that saliency methods used to 
validate model predictions can be misleading in some cases and may 
lead to increased bias and loss of user trust in high-stakes contexts such 
as healthcare25–28. Therefore, a rigorous investigation of the accuracy 
and reliability of these strategies is necessary before they are integrated 
into the clinical setting29.

In this work, we perform a systematic evaluation of seven common 
saliency methods in medical imaging (Grad-CAM30, Grad-CAM++31, 
‘integrated gradients’32, Eigen-CAM33, DeepLIFT34, layer-wise relevance 
propagation (LRP)35 and ‘occlusion’36) using three common CNN archi-
tectures (DenseNet12137, ResNet15238 and Inception-v439). In doing so, 
we establish the first human benchmark for CXR segmentation in a 
multilabel classification set-up by collecting radiologist segmenta-
tions for ten pathologies using CheXpert, a large publicly available 
CXR dataset40. To compare saliency method segmentations with expert 
segmentations, we use two metrics to capture localization accuracy: 
(1) mean intersection over union (mIoU), a metric that measures the 
overlap between the saliency method segmentation and the expert 
segmentation, and (2) hit rate, a less strict metric than mIoU that does 
not require the saliency method to locate the full extent of a pathol-
ogy. We find that (1) while Grad-CAM generally localizes pathologies 
more accurately than the other evaluated saliency methods, all seven 
perform significantly worse compared with a human radiologist bench-
mark (although it is difficult to know whether poor localization perfor-
mance is attributable to the model or to the saliency method), (2) the 
gap in localization performance between Grad-CAM and the human 
benchmark is largest for pathologies that are smaller in size and have 
shapes that are more complex, and (3) model confidence is positively 
correlated with Grad-CAM localization performance. We publicly 
release a development dataset of expert segmentations, which we 
call CheXlocalize, to facilitate further research in DNN explainability 
for medical imaging.

Results
Framework for evaluating saliency methods
Seven methods were evaluated—Grad-CAM, Grad-CAM++, integrated 
gradients, Eigen-CAM, DeepLIFT, LRP and occlusion—in a multilabel 
classification set-up on the CheXpert dataset (Fig. 1a). We ran experi-
ments using three CNN architectures previously used on CheXpert: 
DenseNet121, ResNet152 and Inception-v4. For each combination of 
saliency method and model architecture, we trained and evaluated an 
ensemble of 30 CNNs (see Methods for ensembling details). We then 
passed each of the CXRs in the dataset’s holdout test set into the trained 
ensemble model to obtain image-level predictions for the following ten 
pathologies: ‘airspace opacity’, ‘atelectasis’, ‘cardiomegaly’, ‘consoli-
dation’, ‘edema’, ‘enlarged cardiomediastinum’, ‘lung lesion’, ‘pleural 
effusion’, ‘pneumothorax’ and ‘support devices’. Of the 14 observations 
labelled in the CheXpert dataset, ‘fracture’ and ‘pleural other’ were not 
included in our analysis because they had low prevalence in our test 
set (fewer than ten examples), ‘pneumonia’ was not included because 
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saliency methods using DenseNet121. The localization performance for 
each pathology is reported on the true positive slice of the dataset (for 
mIoU, the true positive slice contains CXRs with both saliency method/
human benchmark segmentations and also ground-truth segmenta-
tions; for hit rate, the true positive slice contains CXRs with both the 
most representative point identified by the saliency method/human 
benchmark and also the ground-truth segmentation). Localization 

performance was calculated in this way so that saliency methods were 
not penalized by DNN classification error: while the benchmark radio-
logists were provided with ground-truth labels when annotating the 
dataset, saliency method segmentations were created on the basis of 
labels predicted by the model. (See Extended Data Fig. 4 for saliency 
method pipeline test set localization performance on the full dataset 
using mIoU.)
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Fig. 1 | Framework for evaluating saliency methods. a, Top left: a CXR image 
from the holdout test set is passed into an ensemble CNN trained only on CXR 
images and their corresponding pathology task labels. The saliency method 
is used to generate ten heat maps for the example CXR, one for each task. The 
pixel in the heat map with the largest value is determined to be the single most 
representative point on the CXR for that pathology. There are three pathologies 
present in this CXR (airspace opacity, pleural effusion and support devices). Top 
right: a threshold is applied to the heat maps to produce binary segmentations 
for each present pathology. Middle row: two board-certified radiologists were 
asked to segment the pathologies that were present in the CXR as determined 
by the dataset’s ground-truth labels. Saliency method pipeline annotations 
are compared with these ground-truth annotations to determine saliency 
method pipeline localization performance. Bottom row: three board-certified 

radiologists (different from those of the middle row) were also asked to segment 
the pathologies that were present in the CXR as determined by the dataset’s 
ground-truth labels. In addition, these radiologists were asked to locate the 
single point on the CXR that was most representative of each present pathology. 
These benchmark annotations are compared with the ground-truth annotations 
to determine human benchmark localization performance. b, Left: CXR with 
ground-truth and saliency method annotations for pleural effusion. The 
segmentations have a low overlap (IoU is 0.078), but the pointing game is a ‘hit’ 
since the saliency method’s most representative point is inside the ground-truth 
segmentation. Right, CXR with ground-truth and human benchmark annotations 
for enlarged cardiomediastinum. The segmentations have a high overlap (IoU 
is 0.682), but the pointing game is a ‘miss’ since the saliency method’s most 
representative point is outside the ground-truth segmentation.
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We found that the saliency method pipeline demonstrated signifi-
cantly worse localization performance on the test set when compared 
with the human benchmark using both mIoU (Fig. 2a) and hit rate 
(Fig. 2b) as an evaluation metric, regardless of the model classifica-
tion AUROC (area under the receiver operating characteristic curve). 
For five of the ten pathologies, the saliency method pipeline had a 
significantly lower mIoU than the human benchmark. For example, 
the saliency method pipeline had one of the highest AUROC scores of 
the ten pathologies for support devices (0.969), but had among the 
worst localization performance for support devices when using both 
mIoU (0.163 [95% confidence interval (CI) 0.154, 0.172]) and hit rate 
(0.355 [95% CI 0.303, 0.408]) as evaluation metrics. On two patholo-
gies (atelectasis and consolidation) the saliency method pipeline 
significantly outperformed the human benchmark. On average, across 
all ten pathologies, mIoU saliency method pipeline performance was 
24.0% [95% CI 18.2%, 29.6%] worse than the human benchmark, with 
lung lesion displaying the largest gap in performance (76.2% [95% CI 
59.1%, 87.5%] worse than the human benchmark) (Extended Data Fig. 5). 
Consolidation was the pathology on which the mIoU saliency method 
pipeline performance exceeded the human benchmark the most, by 
128.1%. For seven of the ten pathologies, the saliency method pipeline 
had a significantly lower hit rate than the human benchmark. On aver-
age, hit rate saliency method pipeline performance was 29.4% [95% CI 
23.1%, 35.5%] worse than the human benchmark (Extended Data Fig. 6),  
with lung lesion again displaying the largest gap in performance (65.9% 
[95% CI 35.3%, 91.7%] worse than the human benchmark). The hit  
rate saliency method pipeline did not significantly outperform the 
human benchmark on any of the ten pathologies; for the remaining 
three of the ten pathologies, the hit rate performance differences 
between the saliency method pipeline and the human benchmark 
were not statistically significant. Therefore, while the saliency method 

pipeline significantly underperformed the human benchmark regard-
less of evaluation metric used, the average performance gap was larger 
when using hit rate as an evaluation metric than when using mIoU as 
an evaluation metric.

We compared saliency method pipeline localization performance 
using an ensemble model with localization performance using the top 
performing single checkpoint for each pathology. We found that on the 
test set the single model has worse localization performance than the  
ensemble model for all pathologies when using mIoU and for six of  
the ten pathologies when using hit rate (Extended Data Fig. 7).

Characterizing underperformance of saliency method 
pipeline
To better understand the underperformance of the saliency method 
pipeline localization, we first conducted a qualitative analysis with a 
radiologist by visually inspecting both the segmentations produced 
by the saliency method pipeline (Grad-CAM with DenseNet121) and the 
human benchmark segmentations. We found that, in general, saliency  
method segmentations fail to capture the geometric nuances of a 
given pathology, and instead produce coarse, low-resolution heat 
maps. Specifically, our qualitative analysis found that the perfor-
mance of the saliency method was associated with three pathological 
characteristics (Fig. 3a): (1) number of instances (when a pathology 
had multiple instances on a CXR, the saliency method segmentation 
often highlighted one large confluent area, instead of highlighting 
each distinct instance of the pathology separately), (2) size (saliency 
method segmentations tended to be significantly larger than human 
expert segmentations, often failing to respect clear anatomical bounda-
ries) and (3) shape complexity (the saliency method segmentations  
for pathologies with complex shapes frequently included significant 
portions of the CXR where the pathology is not present).

Table 1 | Test set localization performance of saliency methods using DenseNet121

Pathology Grad-CAM Grad-CAM++ Integrated gradients Eigen-CAM DeepLIFT LRP Occlusion

mIoU

Airspace opacity 0.248 0.234 0.123 0.293 0.111 0.112 0.242

Atelectasis 0.254 0.245 0.116 0.267 0.126 0.109 0.250

Cardiomegaly 0.452 0.346 0.160 0.379 0.167 0.150 0.312

Consolidation 0.408 0.296 0.177 0.332 0.088 0.099 0.212

Edema 0.362 0.388 0.073 0.370 0.059 0.047 0.347

Enlarged cardiom. 0.379 0.400 0.154 0.372 0.109 0.117 0.363

Lung lesion 0.101 0.089 0.107 0.089 0.072 0.088 0.087

Pleural effusion 0.235 0.195 0.088 0.249 0.090 0.082 0.215

Pneumothorax 0.213 0.216 0.077 0.218 0.084 0.066 0.214

Support devices 0.163 0.133 0.099 0.116 0.086 0.052 0.126

Hit rate

Airspace opacity 0.498 0.558 0.606 0.566 0.528 0.566 0.367

Atelectasis 0.501 0.621 0.520 0.530 0.415 0.468 0.343

Cardiomegaly 0.903 0.732 0.697 0.709 0.610 0.644 0.515

Consolidation 0.738 0.708 0.624 0.626 0.571 0.283 0.338

Edema 0.746 0.781 0.300 0.758 0.468 0.156 0.469

Enlarged cardiom. 0.818 0.630 0.704 0.612 0.469 0.594 0.767

Lung lesion 0.290 0.290 0.423 0.146 0.497 0.356 0.072

Pleural effusion 0.507 0.347 0.332 0.439 0.408 0.283 0.291

Pneumothorax 0.392 0.489 0.801 0.195 0.801 0.697 0.297

Support devices 0.355 0.364 0.491 0.216 0.598 0.264 0.189
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Informed by our qualitative analysis and previous work in histol-
ogy45, we defined four geometric features for our quantitative analysis 
(Fig. 3b): (1) number of instances (for example, bilateral pleural effu-
sion would have two instances, whereas there is only one instance for 
cardiomegaly), (2) size (pathology area with respect to the area of 
the whole CXR), (3) elongation and (4) irrectangularity (the last two 
features measure the complexity of the pathology shape and were 

calculated by fitting a rectangle of minimum area enclosing the binary 
mask). See Extended Data Fig. 8 for the test set distribution of the four 
pathological characteristics across all ten pathologies.

For each evaluation metric, we ran eight simple linear regressions: 
four with the evaluation metric (IoU or hit/miss) of the saliency method 
pipeline (Grad-CAM with DenseNet121) as the dependent variable 
(to understand the relationship between the geometric features of a 
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Fig. 2 | Evaluating localization performance. a, Comparing saliency method 
pipeline and human benchmark localization performances on the test set 
using mIoU. b, Comparing saliency method pipeline and human benchmark 
localization performances on the test set using hit rate. For both a and  
b, pathologies, along with their DenseNet121 AUROCs, are sorted on the x axis 

first by statistical significance of percentage decrease from human benchmark 
mIoU/hit rate to saliency method pipeline mIoU/hit rate (high to low), and then 
by percentage decrease from human benchmark mIoU/hit rate to saliency 
method pipeline mIoU/hit rate (high to low).
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pathology and saliency method localization performance), and four 
with the difference between the evaluation metrics of the saliency 
method pipeline and the human benchmark as the dependent vari-
able (to understand the relationship between the geometric features 
of a pathology and the gap in localization performance between the 
saliency method pipeline and the human benchmark). Each regres-
sion used one of the four geometric features as a single independent 
variable, and only the true positive slice was included in each regres-
sion. Each feature was normalized using min–max normalization 
and the regression coefficient can be interpreted as the effect of that 
geometric feature on the evaluation metric at hand. See Table 2 for 
coefficients from the regressions using both evaluation metrics on 
the test set, where we also report the 95% confidence interval and the 
Bonferroni-corrected P values based on Student’s t distribution.

Our statistical analysis showed that as the size of a pathology 
increased the IoU saliency method localization performance improved 
(0.566 [95% CI 0.526, 0.606]). We also found that as elongation and 
irrectangularity increased the IoU saliency method localization per-
formance worsened (elongation, −0.425 [95% CI −0.497, −0.354]; irrec-
tangularity, −0.256 [95% CI −0.292, −0.219]). We observed that the  

effects of these three geometric features were similar for hit/miss 
saliency method localization performance in terms of levels of  
statistical significance and direction of the effects. However, there 
was no evidence that the number of instances of a pathology had a 
significant effect on either IoU (−0.115 [95% CI −0.220, −0.010]) or hit/
miss (−0.051 [95% CI −0.346, 0.244]) saliency method localization. 
Therefore, regardless of evaluation metric, saliency method localiza-
tion performance suffered in the presence of pathologies that were 
small in size and complex in shape.

We found that these same three pathological characteristics—size, 
elongation and irrectangularity—characterized the gap in IoU localiza-
tion performance between saliency method and human benchmark. 
We observed that the gap in hit/miss localization performance was 
significantly characterized by all four geometric features (number of 
instances, size, elongation and irrectangularity).

Effect of model confidence on localization performance
We also conducted statistical analyses to determine whether there was 
any correlation between the model’s confidence in its prediction and 
saliency method pipeline test set localization performance (Table 3). 

a
Saliency method segmentation

Number of instances
Edema

Number of instances = 1
Cardiomegaly

Number of instances = 2
Atelectasis

Elongation = low (1.44)
Airspace opacity

Elongation = high (5.43)
Support devices

Size = large (0.26)
Enlarged cardiomediastinum

Size = small (0.006)
Lung lesion

Irrectangularity = low (0.24)
Enlarged cardiomediastinum

Irrectangularlity = high (0.78)
Pleural effusion

Size
Airspace opacity

Shape complexity
Pleural effusion

Ground-truth segmentation

b

Fig. 3 | Characterizing underperformance of saliency method pipeline.  
a, Example CXRs that highlight the three pathological characteristics identified 
by our qualitative analysis: (1) left, number of instances; (2) middle, size;  
(3) right, shape complexity. b, Example CXRs with the four geometric features 
used in our quantitative analysis: (1) top left, number of instances; (2) top right, 

size = area of segmentation/area of CXR; (3) bottom left, elongation; (4) bottom 
right, irrectangularity. Elongation and irrectangularity were calculated by  
fitting a rectangle of minimum area enclosing the binary mask (as indicated  
by the yellow rectangles). Elongation = maxAxis/minAxis. 
Irrectangularity = 1 − (area of segmentation/area of enclosing rectangle).
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We first ran a simple regression for each pathology using the model’s 
probability output as the single independent variable and using the 
saliency method IoU as the dependent variable. We then performed a 
simple regression that uses the same approach as above, but includes 
all ten pathologies. For each of the 11 regressions, we used the full 
dataset since the analysis of false positives and false negatives was 
also of interest. In addition to the linear regression coefficients, we 
also computed the Spearman correlation coefficients to capture any 
potential nonlinear associations.

We found that for all pathologies the model confidence was posi-
tively correlated with the IoU saliency method pipeline performance. 
The P values for all coefficients were below 0.001 except for the coef-
ficients for pneumothorax (n = 11) and lung lesion (n = 50), the two 
pathologies for which we had the fewest positive examples. Of all the 
pathologies, model confidence for positive predictions of enlarged 
cardiomediastinum had the largest linear regression coefficient with 
IoU saliency method pipeline performance (1.974, P < 0.001). Model 
confidence for positive predictions of pneumothorax had the largest 
Spearman correlation coefficient with IoU saliency method pipeline 
performance (0.734, P < 0.05), followed by pleural effusion (0.690, 
P < 0.001). Combining all pathologies (n = 2,365), the linear regres-
sion coefficient was 0.109 (95% CI [0.083, 0.135]), and the Spearman 
correlation coefficient was 0.285 (95% CI [0.248, 0.322]).

We also performed analogous experiments using hit/miss as the 
dependent variable on the true positive slice of the test set (CXRs 
with both the most representative point identified by the saliency 
method/human benchmark and also the ground-truth segmentations) 
(Extended Data Fig. 9). Since every heat map contains a maximally 
activated point (the pixel with the highest value) regardless of model 
probability output, using the full dataset has limited value since false 
positives are due to metric set-up and are not associated with model 
probability. We found that model confidence was positively correlated 
with hit/miss saliency method pipeline performance for four out of 
ten pathologies.

Discussion
The purpose of this work was to evaluate the performance of some of 
the most commonly used saliency methods for deep learning explain-
ability using a variety of model architectures. We establish the first 
human benchmark for CXR segmentation in a multilabel classification 
set-up and demonstrate that saliency maps are consistently worse 

than expert radiologists regardless of model classification AUROC. 
We use qualitative and quantitative analyses to establish that saliency 
method localization performance is most inferior to expert localiza-
tion performance when a pathology is smaller in size or has shapes 
that are more complex, suggesting that deep learning explainability 
as a clinical interface may be less reliable and less useful when used 
for pathologies with these characteristics. We also show that model 
assurance is positively correlated with saliency method localization 
performance, which could indicate that saliency methods are safer to 
use as a decision aid to clinicians when the model has made a positive 
prediction with high confidence.

Because ground-truth segmentations for medical imaging are 
time consuming and expensive to obtain, the current norm in medi-
cal imaging—both in research and in industry—is to use classification 
models on which saliency methods are applied post hoc for localiza-
tion, highlighting the need for investigations into the reliability of these 
methods in clinical settings46,47. There are public CXR datasets contain-
ing image-level labels annotated by expert radiologists (for example, 
the CheXpert validation set), multilabel bounding-box annotations 
(for example, ChestX-ray848 and VinDr-CXR49) and segmentations for 
a single pathology (for example, SIIM-ACR pneumothorax segmenta-
tion50). To our knowledge, however, there are no other publicly avail-
able CXR datasets with multilabel pixel-level expert segmentations. By 
publicly releasing a development dataset, CheXlocalize, of 234 images 
with 643 expert segmentations, we hope to encourage the further 
development of saliency methods and other explainability techniques 
for medical imaging.

Our work has several potential implications for human–AI 
(artificial intelligence) collaboration in the context of medical 
decision-making. Heat maps generated using saliency methods are 
advocated as clinical decision support in the hope that they not only 
improve clinical decision-making, but also encourage clinicians to 
trust model predictions51–53. Many of the large CXR vendors (https://
annalise.ai/, https://www.lunit.io/en, https://qure.ai/) use localization 

Table 2 | Coefficients from regressions on geometric 
features of pathologies

Geometric 
feature 
(independent 
variable)

Coefficient using saliency 
method localization  
(dependent variable)

Coefficient using localization 
difference (human 
benchmark − saliency method) 
(dependent variable)

IoU

Number of 
instances

−0.115 (−0.220, −0.010) −0.072 (−0.237, 0.094)

Size 0.566 (0.526, 0.606)*** −0.154 (−0.231, −0.076)***

Elongation −0.425 (−0.497, −0.354)*** 0.476 (0.362, 0.589)***

Irrectangularity −0.256 (−0.292, −0.219)*** 0.307 (0.249, 0.366)***

Hit/miss

Number of 
instances

−0.051 (−0.346, 0.244) 0.470 (0.114, 0.825)*

Size 1.269 (1.146, 1.391)*** −0.944 (−1.104, −0.785)***

Elongation −0.849 (−1.053, −0.646)*** 1.110 (0.865, 1.354)***

Irrectangularity −0.519 (−0.624, −0.415)*** 0.689 (0.564, 0.815)***

*P < 0.05, ***P < 0.001.

Table 3 | IoU: coefficients from regressions on model 
assurance

Pathology CXRs including all 
positives and false 
negatives (n)

Linear 
regression 
coefficient

Spearman 
correlation 
coefficient

Airspace opacity 381 0.714 (0.601, 
0.826)***

0.577 (0.506, 
0.641)***

Atelectasis 296 0.489 (0.333, 
0.645)***

0.348 (0.244, 
0.444)***

Cardiomegaly 229 0.679 (0.535, 
0.823)***

0.592 (0.501, 
0.670)***

Consolidation 120 1.155 (0.674, 
1.635)***

0.384 (0.220, 
0.527)***

Edema 124 0.642 (0.459, 
0.826)***

0.548 (0.411, 
0.660)***

Enlarged 
cardiomedia stinum

668 1.974 (1.608, 
2.340)***

0.428 (0.364, 
0.488)***

Lung lesion 50 0.218 (0.088, 
0.349)**

0.509 (0.268, 
0.689)***

Pleural effusion 159 0.632 (0.489, 
0.776)***

0.690 (0.599, 
0.764)***

Pneumothorax 11 0.446 (0.108, 
0.783)*

0.734 (0.240, 
0.926)*

Support devices 327 0.211 (0.172, 
0.250)***

0.468 (0.378, 
0.548)***

All pathologies 2,365 0.109 (0.083, 
0.135)***

0.285 (0.248, 
0.322)***

*P < 0.05, **P < 0.01, ***P < 0.001.

https://annalise.ai/
https://annalise.ai/
https://www.lunit.io/en
https://qure.ai/
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methods to provide pathology visualization in their computer-aided 
detection products. In addition to being used for clinical interpreta-
tion, saliency method heat maps are also used for the evaluation of CXR 
interpretation models, for quality improvement and quality assurance 
in clinical practice, and for dataset annotation54. Explainable AI is criti-
cal in high-stakes contexts such as healthcare, and saliency methods 
have been used successfully to develop and understand models gener-
ally. Indeed, we found that the saliency method pipeline significantly 
outperformed the human benchmark on two pathologies when using 
mIoU as an evaluation metric. However, our work also suggests that sali-
ency methods are not yet reliable enough to validate individual clinical 
decisions made by a model. We found that saliency method localization 
performance, on balance, performed worse than expert localization 
across multiple analyses and across many important pathologies (our 
findings are consistent with recent work focused on localizing a single 
pathology, pneumothorax, in CXRs55). We hypothesize that this could 
be an algorithmic artefact of saliency methods, whose relatively small 
heat maps (14 × 14 for Grad-CAM) are interpolated to the original image 
dimensions (usually 2,000 × 2,000), resulting in coarse resolutions. If 
used in clinical practice, heat maps that incorrectly highlight medical 
images may exacerbate well documented biases (chiefly automation 
bias) and erode trust in model predictions (even when model output 
is correct), limiting clinical translation22.

Since IoU computes the overlap of two segmentations but pointing 
game hit rate better captures diagnostic attention, we suggest using 
both metrics when evaluating localization performance in the context 
of medical imaging. While IoU is a commonly used metric for evaluat-
ing semantic segmentation outputs, there are inherent limitations to 
the metric in the pathological context. This is indicated by our find-
ing that even the human benchmark segmentations had low overlap 
with the ground-truth segmentations (the highest expert mIoU was 
0.720 for cardiomegaly). One potential explanation for this consist-
ent underperformance is that pathologies can be hard to distinguish, 
especially without clinical context. Furthermore, whereas many people 
might agree on how to segment, say, a cat or a stop sign in traditional 
computer vision tasks, radiologists use a certain amount of clinical 
discretion when defining the boundaries of a pathology on a CXR. There 
can also be institutional and geographic differences in how radiologists 
are taught to recognize pathologies, and studies have shown that there 
can be high interobserver variability in the interpretation of CXRs56–58. 
We sought to address this with the hit/miss evaluation metric, which 
highlights when two radiologists share the same diagnostic intention, 
even if it is less exact than IoU in comparing segmentations directly. 
The human benchmark localization using hit rate was above 0.9 for 
four pathologies (pneumothorax, cardiomegaly, enlarged cardiome-
diastinum and support devices); these are pathologies for which there 
is often little disagreement between radiologists about where the 
pathologies are located, even if the expert segmentations are noisy. 
Further work is needed to demonstrate which segmentation evalua-
tion metrics, even beyond IoU and hit/miss, are more appropriate for 
certain pathologies and downstream tasks when evaluating saliency 
methods for the clinical setting.

Our work builds upon several studies investigating the validity 
of saliency maps for localization59–61 and upon some early work on the 
trustworthiness of saliency methods to explain DNNs in medical imag-
ing47. However, as recent work has shown32, evaluating saliency meth-
ods is inherently difficult given that they are post-hoc techniques. To 
illustrate this, consider the following models and saliency methods as 
described by some oracle: (1) a model M_bad that has perfect AUROC for 
a given image classification task, but that we know does not localize well 
(because the model picks up on confounders in the image); (2) a model 
M_good that also has perfect AUROC, but that we know does localize 
well (that is, is looking at relevant regions of the image); (3) a saliency 
method S_bad that does not properly reflect the model’s attention; 
(4) a saliency method S_good that does properly reflect the model’s 

attention. Let us say that we are evaluating the following pipeline: we 
first classify an image and we then apply a saliency method post hoc. 
Imagine that our evaluation reveals poor localization performance as 
measured by mIoU or hit rate (as was the case in our findings). There are 
three possible pipelines (combinations of model and saliency method) 
that would lead to this scenario: (1) M_bad + S_good; (2) M_good + S_bad; 
(3) M_bad + S_bad. The first scenario (M_bad + S_good) is the one for 
which saliency methods were originally intended: we have a work-
ing saliency method that properly alerts us to models picking up on 
confounders. The second scenario (M_good + S_bad) is our nightmare 
scenario: we have a working model whose attention is appropriately 
directed, but we reject it on the basis of a poorly localizing saliency 
method. Because all three scenarios result in poor localization per-
formance, it is difficult—if not impossible—to know whether poor 
localization performance is attributable to the model or to the saliency 
method (or to both). While we cannot say whether models or saliency 
methods are failing in the context of medical imaging, we can say that 
we should not rely on saliency methods to evaluate model localiza-
tion. Future work should explore potential techniques for localization 
performance attribution.

There are several limitations of our work. First, we did not investi-
gate the impact of pathology prevalence in the training data on saliency 
method localization performance. Second, some pathologies, such 
as effusions and cardiomegaly, are in similar locations across frontal 
view CXRs, while others, such as lesions and opacities, can vary in loca-
tions across CXRs. Future work could investigate how the locations of 
pathologies on a CXR in the training/test data distribution, and the 
consistency of these locations, affect saliency method localization 
performance. Third, while we compared saliency-method-generated 
pixel-level segmentations with human expert pixel-level segmenta-
tions, future work might explore how saliency method localization 
performance changes when comparing bounding-box annotations, 
instead of pixel-level segmentations. Fourth, we explored post-hoc 
interpretability methods given their prevalence in the context of medi-
cal imaging, but we hope that by publicly releasing our development 
dataset of pixel-level expert segmentations we can facilitate the devel-
opment of models that make use of ground-truth segmentations during 
training54. Fifth, the lack of a given finding can in certain cases inform 
clinical diagnoses. A common example of this is the lack of normal lung 
tissue pattern towards the edges of the thoracic cage, which is used to 
detect pneumothorax. For any characteristic pattern, both the absence 
and the presence provide diagnostic information to the radiologist. For 
example, the absence of a pleural effusion pattern is also used to rule 
out pleural effusion. For any characteristic radiological pattern, both 
the presence and the absence contribute to the final radiology report. 
Future work can explore counterfactual visual explanations that are 
similar to the counterfactual diagnostic process of a radiologist. Sixth, 
future work should further explore the potentially confounding effect 
of model calibration on the evaluation of saliency methods, especially 
when using segmentation, as opposed to classification, models. Finally, 
the impact of saliency methods on the trust and efficacy of users is 
underexplored.

In conclusion, we present a rigorous evaluation of a range of  
saliency methods and a dataset of pixel-level expert segmentations, 
which can serve as a foundation for future work exploring deep learn-
ing explainability techniques. This work is a reminder that care should 
be taken when leveraging common saliency methods to validate indi-
vidual clinical decisions in deep learning-based workflows for medical 
imaging.

Methods
Ethical and information governance approvals
A formal review by the Stanford Institutional Review Board was 
conducted for the original collection of the CheXpert dataset. 
The Institutional Review Board waived the requirement to obtain 
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informed consent as the data were retrospectively collected and fully 
anonymized.

Dataset and clinical taxonomy. Dataset description. The localization 
experiments were performed using CheXpert, a large public dataset 
for CXR interpretation. The CheXpert dataset contains 224,316 CXRs 
for 65,240 patients labelled for the presence of 14 observations (13 
pathologies and an observation of no finding) as positive, negative 
or uncertain. The CheXpert validation set consists of 234 CXRs from 
200 patients randomly sampled from the full dataset and was labelled 
according to the consensus of three board-certified radiologists. The 
test set consists of 668 CXRs from 500 patients not included in the 
training or validation sets and was labelled according to the consensus 
of five board-certified radiologists. See Extended Data Fig. 10 for test 
set summary statistics. ‘Lung opacity’ in the CheXpert dataset is the 
equivalent of airspace opacity in the CheXlocalize dataset.

Ground-truth segmentations. The CXRs in our validation set and test 
set were manually segmented by two board-certified radiologists with 
18 and 27 years of experience, using the annotation software tool MD.ai 
(https://www.md.ai/) (Supplementary Figs. 12–14). The radiologists 
were asked to contour the region of interest for all observations in the 
CXRs for which there was a positive ground-truth label in the CheXpert 
dataset. There were several cases in which the radiologists did not draw 
a certain pathology segmentation on a CXR even though the CXR had a 
positive ground-truth label for that pathology: airspace opacity on one 
CXR, atelectasis on one CXR, edema on two CXRs, enlarged cardiomedi-
astinum on one CXR and support devices on one CXR. For a pathology 
with multiple instances, all the instances were contoured. For support 
devices, radiologists were asked to contour any implanted or invasive 
devices (including pacemakers, peripherally inserted central catheters/
central catheters, chest tubes, endotracheal tubes, feeding tubes and 
stents), and to ignore electrocardiography lead wires or external stick-
ers visible in the CXR.

Benchmark segmentations. To evaluate expert performance on the test 
set using IoU, three radiologists, certified in Vietnam with 9, 10 and 18 
years of experience, were asked to segment the regions of interest for 
all observations in the CXRs for which there was a positive ground-truth 
label in the CheXpert dataset. These radiologists were also provided 
with the same instructions for contouring as were provided to the 
radiologists drawing the ground-truth segmentations. To extract the 
maximally activated point from the benchmark segmentations, we 
asked the same radiologists to locate each pathology present on each 
CXR using only a single most representative point for that pathology 
on the CXR (see Supplementary Figs. 1–11 for the detailed instructions 
given to the radiologists). There was no overlap between these three 
radiologists and the two who drew the ground-truth segmentations.

Classification network architecture and training protocol. Multila-
bel classification model. The model takes as input a single-view CXR 
and outputs a probability for each of the 14 observations. If more than 
one view is available, the model outputs the maximum probability of 
the observations across the views. Each CXR was resized to 320 × 320 
pixels and normalized before it was fed into the network. We used the 
same image resolutions as CheXpert40 and CheXNet2, which dem-
onstrated radiologist-level performance on external test sets with 
320 × 320 images. There are models that are commercially deployed 
and have similar dimensions. For example, the architecture used by 
medical AI software vendor Annalise.ai62 is based on EfficientNet63, 
which takes input of 224 × 224. CXRs were normalized before being fed 
into the network by subtracting the mean of all images in the CheXpert 
training set and then dividing by the s.d. of all images in the CheXpert 
training set. The model architectures DenseNet121, ResNet152 and 
Inception-v4 were used. Cross-entropy loss was used to train the model. 

The Adam optimizer64 was used with default β parameters of β1 = 0.9 
and β2 = 0.999. The learning rate was tuned for the different model 
architectures using grid search (over learning rates of 1 × 10−3, 1 × 10−4 
and 1 × 10−5). The best learning rate for each architecture was 1 × 10−4 
for DenseNet121, 1 × 10−5 for ResNet152 and 1 × 10−5 for Inception-v4. 
Batches were sampled using a fixed batch size of 16 images.

Ensembling. We use an ensemble of checkpoints to create both predic-
tions and saliency maps to maximize model performance. To capture 
uncertainties inherent in radiograph interpretation, we train our mod-
els using four uncertainty handling strategies outlined in CheXpert: 
ignoring, zeros, ones and three-class classification. For each of the 
four uncertainty handling strategies, we train our model three separate 
times, each time saving the ten checkpoints across the three epochs 
with the highest average AUROC across five observations selected for 
their clinical importance and prevalence in the validation set: atelec-
tasis, cardiomegaly, consolidation, edema and pleural effusion. In 
total, after training, we have saved 4 × 30 = 120 checkpoints for a given 
model. Then, from the 120 saved checkpoints for that model, we select 
the ten top performing checkpoints for each pathology. For each CXR 
and each task, we compute the predictions and saliency maps using the 
relevant checkpoints. We then take the mean both of the predictions 
and of the saliency maps to create the final set of predictions and sali-
ency maps for the ensemble model. See Supplementary Table 1 for the 
performance of each model architecture (DenseNet121, ResNet152 and 
Inception-v4) with each of the pathologies.

Evaluating localization performance. Saliency methods were used 
to visualize the decision made by the classification network. Each sali-
ency map was resized to the original image dimension using bilinear 
interpolation. It was then normalized using min–max normalization 
and converted into a binary segmentation using binary thresholding 
(Otsu’s method). For occlusion, we used a window size of 40 and a stride 
of 40 for each CXR.

Localization performance of each segmentation was evaluated 
using IoU score. The IoU is the ratio between the area of overlap and the 
area of union between the ground-truth and the predicted segmenta-
tions, ranging from 0 to 1 (0 signifies no overlap and 1 signifies perfectly 
overlapping segmentations). We report the mIoU over 1,000 bootstrap 
replicates on the test set, along with the 95% confidence intervals using 
the 2.5th and 97.5th percentiles of the empirical distribution.

For the evaluation of DenseNet121 + integrated gradients using 
IoU, we applied box filtering of kernel size 100 to smooth the pixelated 
map. For the evaluation of ResNet152 + integrated gradients and of 
Inception-v4 + integrated gradients using IoU, we applied box filtering 
of kernel size 50. For the evaluation of DeepLIFT using IoU, we applied 
box filtering of kernel size 50. For the evaluation of LRP using IoU, we 
applied box filtering of kernel size 80. The kernel sizes were tuned on 
the validation set. The noisy map is not a concern for hit rate because 
a single maximum pixel is extracted for the entire image.

In Extended Data Fig. 1, we report mIoU localization performance 
using different saliency map thresholding values. We first applied 
min–max normalizations to the saliency maps so that each value is 
transformed into a decimal between 0 and 1. We then passed in a range 
of threshold values from 0.2 to 0.8 to create binary segmentations and 
calculated the mIoU score per pathology under each threshold on the 
validation set.

In Extended Data Fig. 2, we report the precision, recall/sensitivity, 
and specificity values of the saliency method pipeline and the human 
benchmark segmentations on the test set.

For this, we treat each pixel in the saliency method pipeline and 
the human benchmark segmentations as a classification, use each 
pixel in the ground-truth segmentation as the ground-truth label, and 
calculate precision, recall/sensitivity, and specificity over all CXRs for 
each pathology. Precision is defined as total number of true positive 

https://www.md.ai/
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pixels/(total number of true positive + false positive pixels). Recall is 
defined as total number of true positive pixels/(total number of true 
positive + false negative pixels). Specificity is defined as total number 
of true negative pixels/(total number of true negative + false positive 
pixels).

In Extended Data Fig. 4, we report the saliency method pipeline test 
set localization performance on the full dataset using mIoU. For this, 
we ensure that the final binary segmentation is consistent with model 
probability output by applying another layer of thresholding such that 
the segmentation mask produces all zeros if the predicted probability 
is below a chosen level. The probability threshold is searched on the 
interval of [0, 0.8] with steps of 0.1. The exact value is determined per 
pathology by maximizing the mIoU on the validation set.

In Extended Data Figs. 5 and 6, we report the percentage decrease 
from human benchmark localization performance to saliency method 
pipeline localization performance on the test set. To obtain the 95% 
confidence interval per pathology on the percentage decrease from 
human benchmark localization performance to saliency method pipe-
line localization performance, we first extracted the percentage decrease 
statistic ([human benchmark mIoU or hit rate − saliency method pipeline 
mIoU or hit rate]/human benchmark mIoU or hit rate x 100) from each 
of the 1,000 human benchmark and the 1,000 saliency method pipeline 
mIoU/hit rate bootstrap replicates for each pathology. In doing so, we 
created the bootstrap distribution of the percentage decrease statistic. 
We reported the 95% CI using the 2.5th and 97.5th percentiles of the 
empirical distribution. To obtain the 95% CI on the average percentage 
decrease over all pathologies, the methodology is the same: we created 
bootstrap replicates of the average human benchmark and saliency 
method pipeline mIoUs/hit rates over all pathologies, extracted the 
percentage decrease statistic from each replicate and then reported the 
95% CI using the 2.5th and 97.5th percentiles of the empirical distribution.

Statistical analyses
Pathology characteristics. The pathology characteristics used in 
all regressions were calculated on the ground-truth annotations. The 
four characteristics are defined as follows. (1) Number of instances is 
the number of separate segmentations drawn by the radiologist for 
a given pathology. (2) Size is the area of the pathology divided by the 
total image area. (3), (4) Elongation and irrectangularity are geomet-
ric features that measure shape complexities. They were designed to 
quantify what radiologists qualitatively describe as focal or diffused. 
To calculate the metrics, a rectangle of minimum area enclosing the 
contour is fitted to each pathology. Elongation is defined as the ratio 
of the rectangle’s longer side to shorter side. Irrectangularity = 1 − (area 
of segmentation/area of enclosing rectangle), with values ranging from 
0 to 1 (1 being very irrectangular). When there were multiple instances 
within one pathology, we used the characteristics of the dominant 
instance (largest in perimeter). All geometric features are normalized 
using min–max normalization per pathology before aggregation so 
that they are comparable on scales of magnitudes.

Model confidence. We used the probability output of the DNN archi-
tecture for model confidence. The probabilities were on a similar scale 
of 0–1 and we did not apply min–max normalization. We report the 95% 
confidence interval and P value of the regression coefficients using 
Student’s t distribution.

For the statistical analyses on the full dataset to determine whether 
there was any correlation between the model’s confidence in its predic-
tion and saliency method pipeline performance using IoU (Table 3), we 
ensured that the final binary segmentation was consistent with model 
probability output by applying another layer of thresholding such that 
the segmentation mask produced all zeros if the predicted probability 
was below a chosen level. The probability threshold is searched on the 
interval of [0, 0.8] with steps of 0.1. The exact value is determined per 
pathology by maximizing the mIoU on the validation set.

For the statistical analyses to determine whether there was any 
correlation between the model’s confidence in its prediction and sali-
ency method pipeline performance using hit/miss (Extended Data  
Fig. 9), we used the true positive slice of the dataset (CXRs with both the 
most representative point identified by the saliency method/human 
benchmark and also the ground-truth segmentation). Since every heat 
map contains a maximally activated point (the pixel with the highest 
value) regardless of model probability output, using the full dataset 
has limited value since false positives are due to metric set-up and are 
not associated with model probability.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The CheXlocalize dataset is available here: https://stanfordaimi.
azurewebsites.net/datasets/abfb76e5-70d5-4315-badc-c94dd82e3d6d. 
The CheXpert dataset is available here https://stanfordmlgroup.github.
io/competitions/chexpert/.

Code availability
The code used to produce our results is available in the following pub-
lic repository under the MIT License: https://github.com/rajpurkar-
lab/cheXlocalize. The version used for this publication is available at 
https://doi.org/10.5281/zenodo.697353665.
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Extended Data Fig. 1 | mIoU localization performance of the saliency method 
pipeline on the test set using threshold values tuned on the validation set.  
a, We first applied min–max normalization to the Grad-CAM saliency maps so 
that each value gets transformed into a decimal between 0 and 1. We then passed 
in a range of threshold values from 0.2 to 0.8 to create binary segmentations and 
plotted the mIoU score per pathology under each threshold on the validation 
set. The threshold that gives the max mIoU for each pathology is marked with an 
“X”. Pathologies are sorted alphabetically and shown in two plots for readability. 

b, Comparing mIoU localization performances of the saliency method pipeline 
on the test set (using the best thresholds tuned on the validation set) and the 
human benchmark. We found that the saliency method pipeline outperformed 
the human benchmark on two pathologies and underperformed the human 
benchmark on five pathologies. For the remaining three pathologies, the 
performance differences were not statistically significant. This finding is 
consistent with what we report in the manuscript using Otsu’s method.
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Extended Data Fig. 2 | Precision, recall/sensitivity, and specificity values of 
the saliency method pipeline and the human benchmark segmentations on 
the test set. We treated each pixel in the saliency method pipeline and the human 
benchmark segmentations as a classification, used each pixel in the ground-truth 

segmentation as the ground-truth label, and calculated the precision, recall/
sensitivity, and specificity over all CXRs for each pathology. For each pathology 
and each metric, we highlight the higher of the two (saliency method pipeline or 
human benchmark) in bold.



Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00536-x

Extended Data Fig. 3 | Test set localization performance for each combination of saliency method and CNN architecture. For each pathology and saliency 
method, we highlight the highest performing CNN architecture in bold.
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Extended Data Fig. 4 | Saliency method pipeline test set localization 
performance on the full dataset using mIoU. True negatives (CXRs whose 
ground-truth label is negative for a given pathology and for which there were 
neither human benchmark nor saliency method pipeline segmentations for 
that pathology) were excluded from the metric calculation. To control for false 
positives, we ensure that the final binary segmentation is consistent with model 
probability output by applying another layer of thresholding such that the 

segmentation mask produced all zeros if the predicted probability was below 
a chosen level. The probability threshold is searched on the interval of [0,0.8] 
with steps of 0.1. The exact value is determined per pathology by maximizing the 
mIoU on the validation set. We found that on the full dataset, for seven of the 10 
pathologies, the saliency method pipeline had a significantly lower mIoU than 
the human benchmark.
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Extended Data Fig. 5 | Percentage decrease from human benchmark mIoU to 
saliency method pipeline mIoU on the test set. Pathologies are sorted first by 
statistical significance of percentage decrease from human benchmark mIoU to 

saliency method pipeline mIoU (high to low), and then by percentage decrease 
from human benchmark mIoU to saliency method pipeline mIoU (high to low). 
We use 95% bootstrap confidence interval.
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Extended Data Fig. 6 | Percentage decrease from human benchmark hit rate 
to saliency method pipeline hit rate on the test set. Pathologies are sorted 
first by statistical significance of percentage decrease from human benchmark 

hit rate to saliency method pipeline hit rate (high to low), and then by percentage 
decrease from human benchmark hit rate to saliency method pipeline hit rate 
(high to low). We use 95% bootstrap confidence interval.
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Extended Data Fig. 7 | Test set saliency method pipeline localization 
performance using an ensemble model vs. using the top performing single 
checkpoint for each pathology. For each pathology, we highlight in bold 

the model (ensemble or single checkpoint) that has the higher metric, and we 
underline it if the difference is statistically significant (using 95% bootstrap 
confidence interval).
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Extended Data Fig. 8 | Test set distribution of four geometric features across all 10 pathologies. The black horizontal line in each box indicates the median feature 
value for that pathology, and each successive level outward contains half of the remaining data. The height of the box indicates the range of feature values in the 
quantile.
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Extended Data Fig. 9 | Hit/miss: Coefficients from regressions on model 
assurance. Statistical analysis to determine whether there was any correlation 
between the model’s confidence in its prediction and saliency method pipeline 
performance using hit/miss. We used the true positive slice of the dataset (CXRs 
with both the most representative point identified by the saliency method/

human benchmark and also the ground-truth segmentation). Since every heat 
map contains a maximally activated point (the pixel with the highest value) 
regardless of model probability output, using the full dataset has limited value 
since false positives are due to metric set up and are not associated with model 
probability.
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Extended Data Fig. 10 | Test set summary statistics.
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